[=] 25 [=]
Solartron GggTGEE e
Metrology ;

SCIGATE AUTOMATION (S) PTE LTD

No.1 Bukit Batok Street 22 #01-01 Singapore 659592
Tel: (65) 6561 0488 X: (65) 6562 0588
Email: s !@gtcomg waww cigate.com.sg

s: Monday - Friday 8.30am - 6.15pm

Orbit®3 Software Manual

orbit

tron
Metrology

\METEK’

ULTRA PRECISION TECHNOLOGIES

User
Stamp

1.1 DOCUMENTATION CROSS REFERENCE

502914 | Orbit3 Modules manual | Details on installation and electrical
requirements.

502990 | Orbit3 System manual |Details on installation and electrical
requirements for the Orbit Library
compatible products

1.2 TRADEMARKS AND COPYRIGHTS

Information in this document is subject to change without notice.

No part of this document may be reproduced or transmitted in any form or by means,
electronic or mechanical, for any purpose, without the express permission of Solartron
Metrology.

© 2015 Solartron Metrology Ltd. All rights reserved.

Microsoft®, Windows®XP. Windows®Vista, Windows®7, Windows®8, Windows®10,

Excel®, VBA, VB and the .NET Framework are registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Delphi® and C++ Builder® are registered trademarks of Embarcadero.
All other brand names, product names or trademarks belong to their respective
holders.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc and any use of such marks by Solartron Metrology is under license.

orbit®is a registered trademark of Solartron Metrology Ltd

1.3 CONTACT INFORMATION

For updated information, troubleshooting guide and to see our full range of products,
visit our website: http://www.solartronmetrology.com

502989 - Orbit3 Software manual Issue 14 Page 2 of 94

http://www.solartronmetrology.com/

2 TABLE OF CONTENTS

1.1 Documentation Cross REfErenCe.........cccooeiiiiieiiceccee e 2
1.2 Trademarks and COPYIIGNTS.eiiiiiiiii e eeeees 2
1.3 Contact INfOrMaAtioN...........u s 2
2 TABLE OF CONTENTS. ... s s s s s s s ssmmssss s s s s s e s s s mmman s s s s e e e s s mmmms s s e e e e e e e e mmmmnnnnns 3
3 INTRODUCGTION........cuueeuueuuuunnnnnnnnnnnnnnnnnnsnnnnnnnnnnnsnnnssnsnsnsssnsssnsssssssnsssnssnssssnnssnnnsnnnnnnnnnnnnnnnnns 7
K Tt S oo o 1= O 7
3.2 Navigating thisS dOCUMENT........ oo e e e eeaaans 8
3.3 Terms and ADDreviatioNs.............o oo 8

TR Tt I Y o] o] {1V = 11T o - TSSO PO PP PRSP RUPPPPR 8
4 SOFTWARE INTERFACING TO ORBIT.......coo o eeecccrrrrrrrrteeesss s ee s s s s smssss s s s s s s e nenns 9
I 1) o T 11 o £ o T 9
L @ 1y o] | 1IN o] =Y UPURPRPP 9

B 0T a1 o= 1] 11114 PR 9

4.2.2 OrbitLibrary Code REfEIENCE.uueiiiiiiiiiiiiiie et e e e e e e e e e e e e e ereeaaaaeaeeaaeaeaaeees 10

4.2.3 OrbitLibrary Code UML Diagram...........cooiiiiiiiie ettt a e e e e e e e e e e e e e aaaaaaaeeas 10
G @y o] G I o] = YA 1) SRR 10
4.4 OrbMEASUIE LIte.......coeeiiieeiiiie et e e e e e e e e e et e e e e et e e e e e aeaes 10
@y o] eI b Cet=Y (=T Lo KT o 1P PPPUPRR 10
@y o] rC T 0o To L= b e=T g o]][P 10

4.6.1 EXCEl VBA COM EXAMPIE....ccciiiiiiiiieiitiieee ettt ettt ettt e e et e e e e e e b e e e e e e nneeeeas 10
4.7 Using Orbit Without WINAOWS..........oooiiiii e 1"
4.8 OrDbit TroubIESNOOTING.ceiiiiiiiiie e e e e e e eees 1
5 ORBIT UTILITY PROGRAMSttt er s e s s s s e s s s s s e s s s s s s s s s s s s s s s e s e s s s s nnn s s s e s e e nnnnssnnns 1
5.1 Orbit3 RegiStration............ooeiiiiiiii et 1
A O T o1 0B =T oY) o (= S PPPPRIN 1"
5.3 Orbit3 UPAALer....... . e e e e eee 1
5.4 Orbit3 Network Power Calculator...............ooooiiiiii e, 1"
5.5 RS232IM HeEIPET ... s 12
5.6 OrbitACS CONfIQUIAtOr.........ooiiiiieiieeeeeeeeeeeeeeeeeeee ettt e e e e e eeanes 12
5.7 Orbit3Gateway ConfigUIator..............ueiiiiiiiiiiie s 12
BB PIM ULIIY. ..o 12
5.9 Orbit3 Confocal UpAater.........ccooooiieiiieeeeeee e e e e e e eeeees 12
6 POWER UP CONDITIONS........ceeeeeeennnnnnnnnnnnnnnsnnnnssnssssssnssssssssnssnnsnsnnnnnnnnnnnnnnsssssssnnnns 13

6.1.1 RS232IM Default Baud RaAte.............uuiiiiiiiiiiiiie e e e e e e e s 13
7 MEASUREMENT MODES. ... ciiiirreiceeessss s s s s s sssmssssss s s s e s s s s nmmas s ss s s e s s e nnmmnssssssssssnnnan 14
400 O A= 1SS 14
7.2 Basic Measurement MOE...........ooooeiiiiiiiii e 15
7.3 Difference MOGE........ccooo it 15
7.4 BUffEred MOGE..........eii et e e e e e e e e e e e e e e e e e e aaeees 16

A 2 B 1) (o Yo U T3 1 1] o WO PO PRSP 16

7.4.2 SYNCIoNIZEA MOAE......ooo ittt et e e e e e e e e e e e ettt et e eeeeaaaaaaeaaeaaaeeaaeeee 16

7.4.3 SAMPIE IMOTE.... ...ttt e e e e e e e e e e e et b e e e e e eeeeeeeeeeeesae e e eaeeeesbbannaaaaaeees 17

7.4.4 External Master Mode - USING EIM.... ..o e e 17
TOREAABUIST.... ..ot e e e e e e e e e e e eraas 17
AL I B Y =10 41 Te3 1Y, (oo [= S P 18

502989 - Orbit3 Software manual Issue 14 Page 3 of 94

7.6.1 Introduction to DyNamic MOES.............uuiiiiiiiiiieeice e e e e e e e e e e e e e e eeaaaans 18
7.6.2 Introduction t0 DYNAMIC 2... ...ttt e e et e e e e e e s s e s s asaeaeeeetaeaaeeeseaseeeeeeesnnnn 18
7.6.3 Why Use DYNamiC MOGE...........uuiiiiiiiiiiiii ettt e e e s sttt e e e e e eabbe e e e e s sanbeetebbbbbbbnnnnnnes 18
A R N O] | [=Tox 1o o TN = (= 19
7.6.5 IMplementing DYNAMIC2.........uuiiiie ettt e e e e bttt e e e e abb e e e e e e aanbeeetbbbbbbbbennnes 19
7.6.6 Dynamic Mode System COoNSIraintS.........cuuiiiiiiiiii e 20
7.6.7 DYNAMIC DAttt ettt e oottt e e e e bttt e e e e e a b et e e e e e e bbe e ettt e eenennee 20
7.6.8 Dynamic External Master MOE............u et e e e e e e e e e e 20
7.6.8.1 EIM DynamicMasterMode Property....... e ittt 21
7.6.8.2 EIM TXSYNC PrOPEIY ...ceiiiiiiiiiie ettt ettt e e et e e e e e te e e e e e e e e e e e e e e e e aaaaaaaaaaaaaaens 21
7.6.8.3 Sync Pulse Rate when using EIM @s @ SYNC SOUICE.........cccuuuiiiiiiiiiieeeeeeee e 22
7.6.9 Requirements for Dynamic MOE.............uuiiiiiiiiiiiiie e e e e e e e e e eeaaaaas 22
7.6.10 Hints and Tips on Using DyNamic MOQE..........cooiiiiiiiiiiiii e 23
7.6.11 DYNAMIC SCNEIMES.cci i ittt e et e ettt e et e eaeeeeeeesa s s s testaaaneeeeeaaeeaeeesesaaaaaanaeaaeeenes 24
7.6.11.1 Dynamic Scheme 1 — USBIM controller as the Sync SOUICE...........ccccccuiiiiiiiiiiiieeeeeiieee e eeeeeans 24
7.6.11.2 Dynamic Scheme 2 - Encoder as the SYNC SOUICE.............ccooiiiiiiiiiiiiiiiieee e 25

7.7 Reading Rate CoOmPAriSON...........uuuuuiiiiiiiiiiiiiiiiiite e eaaaaaaasaaaasaassaassaasssnnsannnas 26
7.7.1 USBIM MK2 Controller reading rates..........ccccuuuiiiiiiiiiiieieee et 26
7.7.2 ETHIM Controller reading FAtES........uueiiiiiiiieeee e e ettt e e e e e e e e s e e st e e e e e e e aaeeaeesaaaeeeaeeesnnnnns 27
7.7.3 RS232IM MK2 Controller reading FateS..........uuuieiiiiieeeeie i ettt e e e e e e e e s e e e e e e e e e eearaaan s 28
7.7.4 WIM Controller reading FatesS...........ceeiiiiiiiiciieieiiie et e e e e e e e e e e e eeaaeeeeeesaassnsnntaereeeeeeeeessnnnn 28
7.8 SUMIMIAIY ... nsnassssanssnnnn e eeeeenees 28
8 ORBIT FEATURES AND COMMANDS.........ccccuuennnnnnnnnnnnnnnnnnnnnnnsnnsnnnnnnnssssssssnsnnnsssssssnns 29
ST I o 01 1517 | o J PP PP PPPPUPPPPPPPINt 29
8.1.1 Using Orbit3 WithoUt HOt SWaP........ciiiiiiiiiiic e s e e e e e e e e e 30
8.2 FINAHOISWAPPEA.... ..o 30
SR O =T IO [P OPR 30
B4 PING ettt ettt ettt ettt ettt ettt ettt e ettt en e 31
o TR T == To L1 0o 11 18 1] € P 31
o B0 o1 BT o= =T 1SS 31
9 ORBIT LIBRARYoiiicemmrre s issssssnrs s s ssmns s s s se s s s ssmmnn s e s s s s s s s s sssnsssnssnns 32
O.1 OVEBIVIEW....eeitiieitietie s n e e e e e eessnnn e eeeeennen 32
1S I I B 4 T4 g F= 1 Y @ o] =T o S SO 34

1S I I [Vo] GO o] (=T o U 34
9. 1.3 NEIWOIK ODJECT. ...ttt e et e e et e e e s ab bt e e e e s 34
1B Y (oo (] (=T @ o] 1= APPSO PP 34

1S I BT /T To [LI @ o) = o1 TR 34
9.2 Referencing the Orbit LiDrary.........ooeeeieiiiiieee e 35
9.3 Orbit Library COM INterface.........cccueeeiiieieee et e e e 37
9.4 Migrating from the original Orbit COM Library.........cccooiiiiiiiiie e 37
10 EXAMPLE CODE - WALK THROUGH.........oiiiriiiircsmeere e s ssssssssmsss s s e e s e e e ennnnes 38
TO.T OVEIVIEW. ...t 38
O R O 11 I 0] (=Y g =TSN 38
10.2 Connecting to the Orbit Library................ccc . 38
10.2.1 InitialisSing THe OrDItSEIVET.......coi e e e e e e e e e e e e e e e e e e e aaaaaaaaeas 39
10.2.2 Connecting 10 The OrbItSEIVET...........uiiiiiiieiieeeee e e e e eaeeees 39
10.2.2.1 WIM CONEIOIEIS. ...ttt ettt ettt e e st e e bt e e aab e e e snre e e naneee 40
10.2.3 Disconnecting from The OrbitSErVEr............cooiiiiiii e e e 40
10.3 Listing Orbit NETWOIKS........oeiiiiieiiieie e e e e e eeeeeenes 40
10.4 AAding Orbit MOAUIES......... e 41
10.4.1 Listing Orbit MOTUIES........uuiiiiieiiiiiie ettt e e e e e e e e e e et e e e e e e aaaaeaessessasnnnstnsesnnnsaeees 41
(02 N [/o T U RSSO 42
10.4.3 NOLify A MOAUIE.......coieieieee ettt et e et e e e tte e e s et e e s neeeeennetbaeeeeeaaeeeeaannnennees 42
L0 o o T 42
LR T T [(o 65371 o] o1 Yo 1R 43
R G I T =Y (S 1Y (o o 111 43
T0.4.7 Clear All MOTUIES........ ettt e oo oottt ettt e e e e e e e e e e e s e e s nenereeeeeeeeaeaaaaaaeaaaans 43

502989 - Orbit3 Software manual Issue 14 Page 4 of 94

10.4.8 Clear TCON MEMOTY.....uueeiiiiiieiee e ee e ettt e et e e e e e e e e e e s s e st e e aeeeeeeaaeaaeeesassaasasnsssstssseeeessnnnaaees 44

R e @7 g T= g o[- o [o [=TT PR 44
10.4.10 Load aNd SAVE NEIWOIK........iiiieeiiei ittt e e e e e e e e e e et e e e s ee b e e ean e e an e ean e raneeeans 44
10.5 Getting Module REAAINGS..........uuuuuuii e e e e e e e e e e e e e enaanas 46
10.5.1 CoNfIQUIING MOQUIES......coeiiiiiiiii ettt et e e e e e e e e et e e e e e s bee e e e e enseeeaeeeanseeeeeeeannreeeeees 46
T0.5.2 MOUIE STATUS.....eiiieiiiiiiii ettt ettt e e e ettt e e e e e st e e e e e e s be e e e e e e ntbeeeeeaannseeeaeeaannrseeaeas 46
10.6 REadiNg MOGES.........ouiiiiiiiiiiiee et e e e e et e e e e e e e eeeneanes 48
10.6.1 REAABUISE MOGE. ...ttt e ettt et e e e e e e e e e e e e e s e s nnteseeeeeeaeaaaaeeeaaeens 48
10.6.2 DYNAMIC MOAES 1 & 2. ...ttt ettt e e et e e e e b e e e e e e bt e e e e e e 49
10.6.2.1 Dynamic External Master MOE.............uueiiiiiiieii et e e e e e eaeeeeee 51
10.6.3 BUITErEA IMOGE.........eiiiiiie ittt ettt e e e e e e e ettt e e e e e st e e e e e e e ansbeeaaaeaaeaaaaaaaeaens 52
10.6.4 DiffEr@NCE MOE........c. ettt e ettt e e e et e e e e e et e e e e e e e st e e e e e e aeeeaeaaaaaaaaaaeeees 54
10.6.5 REMMAIK IMOE. ...ttt ettt e e e ettt e e e et e e e e s sttt e e e s e nsbte e e e e e annbaeaaeaeaaeaaaaaaens 54
11 ORBIT LIBRARY TEST..... . ssssssssss s s s s s mmsssssn s 55
L I 19 Yo [o 1 o 55
7 == (= 55
G T O =T €U o =SSR 57
LS T B €= 1] oo IR = 1 (=T [P EPPPP TR 57
LS T2 U = T TP 58

(I T2 B Yo oY 1Y =1 o J R 58

I T2 NN 1= Y0 Y 5 = o TR 59

11.3. 2.3 MOQUIE TaD....eeiiiiieeeiee ettt e e e e et e e e e e ettt e e e e sabaeeaeeesabbeseaesaastsnssessensrnnnnes 60
11.3.2.4 Read BUrst MOAE Tab........oiiiiiiiiiiiei ittt eeeees 63
11.3.2.5 DYNAMIC MOAE TaD.... .ottt et e e e s st e e e e s sbe bbb bbeaaane 64
11.3.2.6 Difference Mode Tab........ .o o ettt e e e e e e e e e e e e e e e e eeeeeeeees 65
11.3.2.7 Buffered MOde Tab..... .ottt e e e e e e e e e e e e e et e e e e e eeeenas 66

R T I = Y= 1 oo [- o 67
11.3.2.9 RESUIS WINAOW. ...ttt et e e e e e e e e e e e sttt et e e e e aaaaeeeaaeaaaeenes 68

L S To U o= o o = TP 69
11.4.1 DeVEIOPMENT TOOIS.....eeiiiiiieii ittt e et e e e et e e e e e e e e e e e e aeaaaaaaaaaaaeens 69
11.4.1.1 Microsoft Visual STUAIO CH EXPIreSS. uuuuieiiiiiiiiieeee e ee e e e e e e e e e e e e e eeeeeeeeaenan 69
11.4.2 Opening the ProJEct File.........cooo i 69

L 302 B @7 4T 1 1 o USSP 71

L 3 (U o 1 T TR PPN 71
11.4.3 Navigating the SOUMCE COQE........cocuiiiiie et e e e e e e e et e e e e e e e e aaaaaaaaeas 72
12 MODULE SPECIFIC OPERATION.......ccoiiiiiiiiiiiiensssnnnnns 76
12.1 Digital Probe (DP).....eeeeeeeeieeieeeiieeeeeieee ettt eeeaeee s aasaaassesssssssssssssss s e e eeeeennnanes 76
(P20 I [(oo [U T3 o o T PP PR PRP 76
12.1.2 Programmable RESOIULION.........uue it e s e e e e e e e e e e e et e e e eran e e eeeen 76
12.1.3 Programmable Electrical Measurement Bandwidth................ccooiiiiiiiii e, 77
12.2 Analogue input MOAUIE (AIM)........uiiiiiii e e 77
12.3 Lin€ar ENCOAET (LE)......uuiiiiiiiiei ittt e e e e e e e ee e 78
22 Tt I 01 (o Yo [T3 (T o 1N 78
12.3.2 Linear ENcoder & REfErENCE MaArK...........uuuiiiiieiiei e e e e e e e e e e e e eaans 78
12.4 Encoder Input Module (EIM)..........oooo 79
(P2 3t I [(oo [U T o o T PR PR 79
L |V Y oo [N [N o o] 0= [79
12.5 Digital Input Output Module (DIOM).........eiiiiiiiii e 80
P22 W0t B [o1 o To [F T3 1T o T 80
L2 I == Lo I 1 T o U1 80
LT RS T=Y A O 101 01U | (= TSP PP PPPPPOIRS 80
12.5.4 Improving Reading INteGIitY..........eeeeieeiiii e e e e e e e e e e e e e e e e e e aeeees 80
12.5.5 DIOM 0peration @XamPIE............c..uuuuiiiiiiiiiiiiiie ettt e e e e e e e e e e e e et e e e e aaaaaaeaaaaaaaaes 81
12.6 Digimatic Interface Module (DIM)........ooooiii e 82
P22 00 [o o [F T3 1T o T 82
12.6.2 Changing the Mode of OPEration............coo i 82
12.6.3 Update Reading INformation............coooi i 82
12.7 Laser Triangulation Sensors (LT & LTH)......euiiiiii e 83
2 A0 I IO o oo U = 1T o 83

502989 - Orbit3 Software manual Issue 14 Page 5 of 94

12.7.1.1 Reading and Writing SetiNgS.........cooi i e a e 83
12.7.2 LTH CONFIGUIALION. ...ttt e e e e st e e e s et e e e e e e nnbe e e e e e annbeeeeeeeeas 83

12.7.2.1 Reading and Writing SettiNgsS.......coouuiiiiiiiii e 83
12.8 CoNfOCAl MOAUIE.........co e e e e e e e e e e e e e e e e e e e aaaeeeaeeees 84
12.8.1 OptiMISiNgG SEHINGS.eeiiiie i e et e e e s et e e e e et bar e e e e e e e eaaaaaaaaaaeeeeees 84
12.8.2 CONFOCAI PrOPEIIES.ccc ettt e e e e e e e e e e e e e e et a e e e e e eeaaeaeeeeesra e aaeeas 84
12.8.2.1 Get/Set INTegration.............uuiiiieeieee e e e e e e e e e e e e e e aeeaaa 84
12.8.2.2 Get/Set BrighINESS.t e e e e e e e e aeeaaa 84
12.8.2.3 Get/SEt REAU MOUE........eeiieieeeee ettt e e e e e e e e e e e e s e et e e e eeeaaneeees 84
12.8.2.4 Get/SEE AVEIAGING. ... eieiieee ittt e ettt e e e ettt e e e s e bt et e e e e saabeeeeeeeabbeseeebbebebbebbrnnnnen 85
12.8.2.5 Read Second Channel in UNitS.........cooiiiiiiiieeee e e e e e e e e e eeees 85

13 ORBIT ERROR CODES AND ERROR HANDLING.........ccciiiiiiiirirrrerrrsssss s sss s e e e 86
R T 1Y o T=T | PPNt 86
(G T2 o =T (o | 1 g To TN = 5 o] = PSPPI 86
13.2.1 Error Handling When Using the Orbit Library..............coooiiiiiiiieeee e 86
13.3 COMMON EITOIS. ...uiiiiii ettt et e e ettt e e e e e e e e e e e e et e e e e e e eeeeeasana e eeennas 86
G TR Tt I [T =t o S 86
13.3.2 UNdEr @nd OVEF RANGE.ciiiiiiiiiiiie ettt e e et e e e e e e e e e e e snbbe e e e e e s 86
13.3.3 OVEISPEEA EITONttt ettt e e e e e e e e e e e e e e eeeeeeetaba e e eananeeeanas 86
13,4 MOAUIESTAtUS ...t e e e e e e e e e e et e e e eaa e eees 87
L BC TR O 4 o1 g =14 o] RSP 88
14 APPENDIX A - ORBIT COMPATIBILITY ROADMAP........occereerrrrreemesee e e s e eeemnnaaas 92
L 1Y/ o To [L= SO 92
20t T T 1 o1 RSP 92
14.1.2 Module RelEasS HISTOY.........u i e e e e e e e e e e e e e e e eeeeee e 92
14.1.3 Module ComPatibDility...........oeiiiiiiiiiiiiiic e e e e e e e e e e e e e e e e e e a e 93
14.2 Controllers & SOfWAIE............ci i e e e e eee 94
L T O 1 o1 RO 94
15 REVISION HISTORY.conssessnnnnssnnsns 95

502989 - Orbit3 Software manual Issue 14 Page 6 of 94

3

INTRODUCTION
3.1 SCOPE

The Orbit®3 Measurement System is a modular measurement system that can be put
together quickly, easily and is cost effective. It allows different types of sensors to be
easily mixed and integrated on a single network independent of sensor technology. In
addition to linear probes and linear displacement transducers, third party sensors can
easily be integrated. This, combined with programmable input and output modules for
interfacing to external equipment makes the Orbit®3 Measurement System a flexible
solution for measurement applications.

Typically an Orbit®3 Measurement System will consist of four elements: windows
support Measurements Modules with T-Connectors, Measurement System
controllers, power supplies and cables. All of which can be obtained from the same
supplier, thus guaranteeing compatibility and accelerating system integration.

The Orbit®3 Measurement System also includes a range of readouts for stand alone
measurement systems; these also can be used as a basic interface to a PLC.

This document defines the software protocol of the Orbit®3 Measurement System and
provides information and guidance on using the OrbitLibrary.

The information is principally for users of PC systems who wish to develop software
applications for use with the Orbit Measurement System.

Orbit can also be used with low level commands using the RS232IM Controller
Module. These commands are detailed in the Orbit3 Low Level Command manual
(503303), available on request.

This manual should be used in conjunction with the Orbit®3 System manual & the
Orbit®3 Module manual.

The measurement and mechanical performance of individual products is detailed in
the appropriate sections of the manuals.

Support software is supplied for all versions of Windows, from XP onwards (both 32 &
64 bit versions).

Examples are provided for C# and C++.

502989 - Orbit3 Software manual Issue 14 Page 7 of 94

3.2 NAVIGATING THIS DOCUMENT

This is a large document, which is a useful reference when writing Orbit applications.
Hyperlinks are included to aid navigation.

To return to the point where you have jumped from, most pdf readers
have a ‘Previous Page View’ button, alternatively use the keyboard
shortcut 'ALT" + left arrow key.

3.3 TERMS AND ABBREVIATIONS

For terms associated with the Orbit3 measurement system, see the Orbit3 System
manual.

3.3.1 Abbreviations

AIM Analogue Input Module

DP Digital Probe (e.g. DP10)

DIOM Digital Input Output Module

EIM Encoder Input Module

LE Linear Encoder

LT Laser Triangulation Probe

LTH High performance Laser Triangulation Probe

DIM Digimatic Interface Module

M (Orbit) Module

PIE Probe Interface Electronics

USBIM USB Interface Module

RS232IM RS232 Interface Controller

RS485IM RS485 Interface Controller

ETHIM Ethernet Interface Controller

ORBIT® Orbit communication protocol

OSPW Orbit Support Pack for Windows

WIM Bluetooth Wireless Interface Controller

4K MODE Synchronised Measurement at 3096 readings per second
2K MODE Synchronised Measurement at 1953 readings per second
1K MODE Synchronised Measurement at 976 readings per second
VBA Visual Basic for applications

COM Component Object Model

DLL Dynamic Link Library

502989 - Orbit3 Software manual Issue 14 Page 8 of 94

4 SOFTWARE INTERFACING TO ORBIT

4.1 INTRODUCTION

The Orbit®3 Support Pack for Windows covers interfacing Orbit to a PC with Microsoft
Windows Operating System. It contains an Install program which will installs the Orbit
drivers, software libraries, applications and manuals on to your hard disc.

Included with Orbit®3 Support Pack for Windows is the Orbit library. This is the
simplest and best tool to use to communicate with an Orbit Measurement System.

See the Orbit®3 System manual for installation details, including PC
specification and updating Windows drivers.

4.2 ORBITLIBRARY

The Orbit Library is specifically designed for the Microsoft .NET Framework that is
included with all Windows operating systems from Windows XP onwards.

Using the Orbit Library greatly simplifies the development of Orbit systems since it:
+ Provides a more modern object orientated software design.

» Allows the end user to avoid learning about the intricacies of the ‘low level’ Orbit
interface. In particular, this:
> Calls all the necessary functions in the correct order.
> Handles the timing constraints of different modules and controllers.
> Handles the compatibility of modules and controllers.
> Seamlessly handles dynamic mode.

> Can be easily interfaced to Windows based software using standard high level
languages. Example programs are available that illustrate this.

For these reasons, the Orbit Library is always recommended for use with new
designs.

* For a simple C# implementation of the Orbit Library, see the 'Orbit3 CSharp
Example' project

* For a full implementation of all the Orbit Library features, see the 'Orbit Library
Test' project.

Both are installed with the Orbit Support Pack.

4.2.1 Compatibility

The OrbitLibrary is fully compatible with Windows XP, Vista and Windows 7, 8 an 10,
both 32 bit and 64 bit versions.

Some of the older Orbit network Controllers are not compatible, see the Orbit3
compatibility section for details.

502989 - Orbit3 Software manual Issue 14 Page 9 of 94

4.2.2 OrbitLibrary Code Reference
This provides extensive help on commands and syntax of the Orbit Library.

It is installed to the Orbit3 Support Pack for Windows-Manuals sub-directory.
Note. References to standard C# commands link to the Microsoft MSDN website.

4.2.3 OrbitLibrary Code UML Diagram

This provides a UML (Unified Modelling Language) drawing for the Orbit Library.
It is installed to the Orbit3 Support Pack for Windows-Manuals sub-directory.

4.3 ORBIT LIBRARY TEST
This program is designed to demonstrate the functionality of the Orbit Library. This
program is a useful test program in its own right.

e This includes examples of all Orbit Library commands.

e The source code is included with full comments.
See Orbit Library Test

4.4 ORBMEASURE LITE

This program provides an 'out of the box' Orbit application.
It can be used to demonstrate (using bar graphs) readings from modules, or as an
Orbit application in its own right.

It has logging capability to both .csv files and a direct interface to Microsoft Excel®. Itis
limited to 16 Orbit Modules.

For logging to Excel, please ensure that the Microsoft Office primary interop
assembly (PIA) for your version of Excel is installed. The PIA enables managed
code to interact with Excel's COM-based object model. Search on the web for:
the relevant Excel interop download.

4.5 ORBIT3 EXCEL® ADD-IN

The Orbit3 Excel® Add-in enables you to take readings from Orbit Modules forming an

Orbit Network and place them in cells of a Microsoft® Excel® spreadsheet.

It is designed to work with standard Solartron Orbit3 Controllers (Orbit USBIM, Orbit
RS232IM and Orbit ETHIM).

Example spreadsheets for this add-in are included.

The add-in is available from the Solartron website.

4.6 ORBIT3 CODE EXAMPLES

To illustrate how to use OrbitLibrary software in different applications, examples are
provided for C# , C++ COM and VBA (Excel COM).

They are installed as part of the Orbit3 Support Pack for Windows.

Both the C# ,and C++ COM examples will only connect to the first available Orbit
Network and will ignore any others.

See Example Code - Walk through for more details of the C++ and C# examples.

4.6.1 Excel VBA COM Example

This is intended for use with Excel 97 through to Excel 2003. It may also be run on
newer versions, but from Excel 2007 onwards, the .NET Framework interface is
automatically used, rather than the COM.

502989 - Orbit3 Software manual Issue 14 Page 10 of 94

To run the Excel VBA example, the Macro security level in Excel should be set to
Medium, i.e. “allowing you to choose whether or not to run potentially unsafe macros”.

4.7 USING ORBIT WITHOUT WINDOWS

Some users require access to non Windows based computers (e.g. PLC —
Programmable Logic Controllers). The USBIM MK2, RS232IM MK2 Orbit Controllers
can be used to interface to this type of computer. Also, the Ethernet Controller can be
used via 'sockets'.

The ‘Low Level’ Orbit protocol that should be adhered to is detailed in the Orbit3 Low
Level Command manual (503303), which is available on request.

The RS232IM Helper can be used to assist in writing non Orbit Library programs.

4.8 ORBIT TROUBLESHOOTING

A useful utility for helping to diagnose software problems is the Orbit3 Reporter. The
software produces a log file, which can then be sent to your supplier, along with a
description of the problem itself, to aid technical support.

5 ORBIT UTILITY PROGRAMS

These programs are all available as part of the installation of the Orbit3 Support Pack
for Windows.

5.1 ORBIT3 REGISTRATION

This program is used to register Orbit ETHIMs and RS232IMs. Any ETHIMs or
RS232IMs must be registered with this program in order to work with the Orbit Library.
See Orbit3 System manual for details.

5.2 ORBIT3 REPORTER

If you are having problems with interfacing with the Orbit3 Measurement System, it is
highly recommended to use the 'Orbit3 Reporter'. This program is used to find Orbit
Controllers and Modules on the Orbit Measurement System. It retrieves information
about the PC set-up configuration, as well as any Orbit Software, Controllers and
Modules found.

Before running this program, close all other Orbit related programs.

On exiting the program, the on screen results can be logged to a text file. Choose the
appropriate file name & path and click Save.

This file contains useful information about the Orbit3 Measurement System in question
and is useful for troubleshooting & diagnosing problems.

5.3 ORBIT3 UPDATER

This application enables the user to update the firmware of Orbit Controllers (including
MODIM), Orbit Modules, OrbitACS & PIM products. The Confocal System has a
separate updater application, see 5.9.0rbit3 Confocal Updater

It may be used in conjunction with the Orbit3 Reporter to ensure that the Orbit
components are all running the latest firmware.

5.4 ORBIT3 NETWORK POWER CALCULATOR

This is an Excel spreadsheet used to determine power supply calculations and
considerations. Refer to the Orbit System manual for Orbit installations.

502989 - Orbit3 Software manual Issue 14 Page 11 of 94

5.5 RS232IM HELPER

The RS232IM Helper application is a .NET based application written in C# (C Sharp)
that can be used as an aid when writing non Orbit Library based programs.

It displays the serially transmitted and received ASCII bytes for common Orbit
commands.

The ‘Low Level’ Orbit protocol that should be adhered to is detailed in the Orbit3 Low
Level Command manual (503303), which is available on request.

5.6 ORBITACS CONFIGURATOR

A utility for configuring mutliple OrbitACS controllers with their attached Orbit3
modules

5.7 ORBIT3GATEWAY CONFIGURATOR
A utility for configuring MODIM controllers with their attached PLC and Orbit3 networks

5.8 PIMUTILITY
A utility for configuring PIM controllers with their attached PLC and Orbit3 networks

5.9 ORBIT3 CONFOCAL UPDATER

This application enables the user to update the firmware of Confocal Controllers
(requires both an Orbit and Ethernet connection).

502989 - Orbit3 Software manual Issue 14 Page 12 of 94

6 POWER UP CONDITIONS

On power up, the default conditions for all modules are:
* Basic Measurement Mode
* The Orbit Network Speed (Baud Rate) is 187.5 K Baud, (see Orbit Speed).

In addition, on power up default conditions for Digital Probes & AlMs are:
+ Resolution defaults to14 bits, (see Programmable Resolution).
» Averaging defaults to 16, this provides:
* An Electrical Measurement Bandwidth of nominally 100Hz
+ Measurement Register Refresh Rate of 244 updates per second (every 16 x

256us = 4.096mS).
(see Programmable Electrical Measurement Bandwidth).

These are the factory defaults for Resolution and Averaging. The user may set their
own defaults. See Resolution and Averaging Configuration

DIOM only:
» Default state on all pins at switch on is INPUTSs.

DIM only:
» Default state is Read Continuous.

EIM only:
» Default state is x1 quadrature mode and Reference Mark not active.

LT & LTH Laser Modules
» Default state is laser beam On

6.1.1 RS232IM Default Baud Rate
* The default RS232 Baud rate is 9600 Baud.

502989 - Orbit3 Software manual Issue 14 Page 13 of 94

7 MEASUREMENT MODES

7.1 OVERVIEW

Each of the following reading commands and modes have been developed to
accommodate the differing scenarios and challenges that commonly present
themselves to manufacturing and metrology systems. Each mode, although
seemingly similar, has definitive differences; some of these initially appear subtle.
The aim of this document is to provide simple and clear explanations to what each
reading mode or command is, the basics of how it does it, and importantly, what each
mode can be used for.

Normal readings, ReadBurst Mode, Dynamic Mode (1&2) and Buffered Mode are all
capable of retrieving readings in either units of measurement (UOM) or in counts.
The table below shows the advantages and disadvantages for each mode.

Mode Advantages Disadvantages
Basic - Easytouse « Slow with more than 1
Measurement module
Mode + Readings not

synchronised

Difference Mode e Fast * Only max & min are
stored

* Not compatible with all
module types

Buffered + Fast 3000 readings max
» Synchronised Readings * Not compatible with all
« Compatible with all module types
controllers
ReadBurst + Fastest non dynamic
method

+ Easytouse

* Synchronised Readings

+ Compatible with all Orbit3
module types & controllers

Dynamic Mode + Fast * Limited to 31 modules

« Synchronised Readings max

* High speed only

* Not compatible with all
module types

+ USBIM Mk2 Only

Dynamic 2 Fastest « USBIM Mk2 Only
* Synchronised Readings
* Up to 150 modules

* High or Ultra high speed

+ Compatible with all Orbit3
module types

502989 - Orbit3 Software manual Issue 14 Page 14 of 94

Refer to the Reading Rate Comparison Section for more speed based comparisons.

7.2 BASIC MEASUREMENT MODE

Each Orbit Module type has both simple get reading commands; ReadinglnCounts
and ReadinglnUnits; returning the reading in the modules pre-configured unit of
measurement.. For modules such as the EIM or DIOM that do not have a specific unit
of measure, getting the the ReadingInUnits, will return the ReadingInCounts.
Executing these commands simply returns the reading.

NOTE: lterating through from one module in a network to the next and taking a
reading on each module in quick succession is not a recommended or precise
method of taking synchronised readings. ReadBurst is provided to do this.

7.3 DIFFERENCE MODE

In Difference mode, readings are taken continually and the maximum, minimum,
number and sum of readings are stored in the module itself. These values can be read
at any time using the appropriate Orbit commands. This mode has the advantage that
the modules themselves do the calculations, not by the controlling software. Thus, the
Orbit Communication speed does not affect reading rate.

Notes:

The sum and number of readings can be used to simply obtain the mean
(average) reading.

For Digital Probe, LT, LTH and AlMs, Difference mode is only available in 14-bit
resolution.

For Linear Encoder, Difference mode does not return the sum and number of
readings.

For Digital Probe and AlMs, the Reading Rate during Orbit Difference Mode is 244
updates per second (i.e. every 4.096ms).

When the Module exits from Difference Mode, the measurement conditions prior to
entering difference mode are restored.

502989 - Orbit3 Software manual Issue 14 Page 15 of 94

7.4 BUFFERED MODE

7.4.1 Introduction

Buffered capable Orbit modules have internal memory that can store up to 3000
synchronised readings at a reading rate of 244 reading / second, which can then be
retrieved by the Orbit Library.

All measurements are 14 bit, (for DP, LT, LTH and AIM only).

Currently buffered capability is restricted to Digital Probes, LT, LTH, AIMs and DIOM.

Buffered mode is ideal for slower, less powerful computers or when dynamic mode is
not available.

Buffered Mode has three sub-modes:
* Sync Mode — readings are taken at a pre-defined interval
+ Sample Mode - readings are taken under software control
+ External Master Mode — readings are taken via an external master.

Refer to the Buffered Mode 'Code Walkthrough' and the Orbit Library Test example for
further illustration of these modes.

When using buffered mode, the module(s) to be included in the collection should be
individually selected in sync or sample mode and then enabled. All enabled modules
are synchronously started by the Network OrbitBuffered Start method and stopped by
Network OrbitBuffered Stop method. Note that after 3000 readings have been stored,
no more will be read, since the internal buffer is full.

On the network OrbitBuffered Stop method, the Orbit Library downloads all enabled
modules’ buffered readings and exposes them via each module’s BufferedData
property.

7.4.2 Synchronized Mode

Once started, this mode sets all buffered enabled modules to store readings at a pre-
defined Interval.

This interval is set by the ModuleBuffered OTUs property before enabling. One OTU
(Orbit Timing Unit) is defined as being 102.4uS. The selected interval is required to be
not zero and to be a multiple of 40 OTUs.

In order to simplify buffered sync mode, the Orbit Library also provides a
Readinglinterval property (in microseconds), which avoids using OTUs. Upon setting
the Readinglnterval property, the Orbit Library selects the nearest valid OTUs value
and loads the ReadinglintervalErrorinUs property with deviation between the two.
Therefore, we recommend using the Readinglnterval property for all new designs.

Note that different modules can be assigned different Reading Intervals in the same
buffered collection.

502989 - Orbit3 Software manual Issue 14 Page 16 of 94

7.4.3 Sample Mode

Once started, this mode sets all buffered enabled modules to store readings each time
the Network OrbitBuffered Sample method is called.

This Sample method is broadcast to all buffered enabled modules, hence these
readings are synchronised to each other.

7.4.4 External Master Mode - Using EIM

In a similar way to External Master Mode in dynamic, an Encoder Input Module (EIM)
can be used to Sample readings in buffered mode in place of the controller.

In order for this to be valid, the following rules apply
* The EIM should be at the last module Index of the network
» Select the Network OrbitBuffered MasterAddress to be that of the EIM
* Enable all modules in Buffered Sample Mode

Upon Network OrbitBuffered Start
* The EIM waits until its reference mark is passed

» Every TxSample counts, a buffered Sample command is automatically sent by
the EIM.

Upon Network OrbitBuffered Stop
» Exits out of buffered external master mode.

After a buffered master collection has been stopped, the Status of the External Master
module should be checked to ensure that there has not been a sync/sample gap error
(a sample being triggered before the previous sample has finished triggering).

If a sync/sample gap error occurred then the External Master will have stopped
triggering buffered samples at that point.
The error is cleared at the point that it is read back.

Note. When a Buffered master collection is stopped, the Ref Action settings on the
Dynamic master module are reset to none.

7.5 READBURST

New with the Orbit Library, the ReadBurst command retrieves a single, synchronised
block of readings of all contiguously capable modules on the network. ReadBurst is
fast and precise and allows easy access to data immediately.

ReadBurst is designed for situations that require taking a set of synchronised readings
quickly, processing them and moving on to the next operation. It is designed for many
quick bursts of reads.

There is no configuration needed for ReadBurst other than ensuring the ReadBurst
capable modules are contiguous from the first address; any non-capable modules will
break contiguity, potentially reducing the number of modules included in the collection.

Refer to the ReadBurst Mode section for a code 'walk through'.

502989 - Orbit3 Software manual Issue 14 Page 17 of 94

7.6 DYNAMIC MODES

7.6.1 Introduction to Dynamic Modes

Dynamic mode provides a method of obtaining synchronized measurements at high
speed from Digital Probes, EIM, AIM, DIOM and other compatible Orbit products. This
mode is of importance when measuring moving objects. It gives the user the ability to
take high-speed measurements from a set of transducers that are sampled at the
same point in time — i.e. simultaneous sampling.

Unlike ReadBurst, dynamic is centred around collecting large sets of data at known or
predictable intervals over a period of time, the collected data can then be processed
once the collection is complete.

Using the Orbit Library, dynamic modes are only available with a USBIM Mark 2 (and
later) controllers.

To help you write your application we recommend that you refer to the Dynamic
Modes 1 & 2 Code 'Walkthrough', the Orbit3 Code Examples, Orbit Library Test and
the Orbit Library Code Reference.

7.6.2 Introduction to Dynamic 2

Dynamic2 mode was introduced with Orbit3 and the Orbit Library. This mode operates
in a similar way to traditional dynamic, but with extra features and improvements:

* Fastest possible reading speeds

* Will run in both High or Ultra high speed

* Any number of modules. Up to 150 modules max.

» Has improved Collection Rate flexibility with the Dynamiclnterval property
+ Compatible with all Orbit3 module types

7.6.3 Why Use Dynamic Mode
In basic measuring mode (non-dynamic), readings are read back from Orbit modules
as required. A command to request a reading is transmitted from the controller & the
reply from the Orbit module is then received. A finite amount of time is taken with the
Orbit communications to transmit and receive data.
A single module on a network works well in this mode, as there is only the one module
to communicate to, which gives fast reading rates. However, when there
is more than one module on the network, there are several issues to consider:

* Is it important to synchronize readings?

* What reading rate is required?

* What type of Orbit controller is to / can be used? (e.g. USBIM, RS232IM, ETHIM
etc.)

Note that Dynamic modes are only available if all modules and the controller are

dynamic capable. Whether the desired Orbit Network is 'Dynamic capable' is
automatically handled by the Orbit Library.

502989 - Orbit3 Software manual Issue 14 Page 18 of 94

file:///Z:/Engineering/GDavis/Pending_stuff/EDCR22559%20o3spw/502989/source/502989%20-%20Orbit3%20Software%20manual.odt#4.2.2.Orbit%20Library%20Code%20reference%7Coutline

7.6.4 Collection Rate

A dynamic collection is defined by the rate of time that each sync (a collection of
readings) is spaced. The Orbit Library supports the traditional dynamic sync rates of
1k, 2k and 4k, as well as the dynamic2custom (Dynamic 2) rate. This dynamic mode,
introduced with the Orbit Library, optimises the dynamic collection rate for the current
network set up, opposed to the traditional dynamic approach. Dynamic 2 also
provides a settable interval property to further configure a dynamic collection's sync
rate.

Table 10. Collection rate details

Rate Maximum Time Between | Network
Modules Reads Speeds

1K 8 256uS High

2K 16 512uS High

4K 31 1024uS High

Dynamic 2 Network Between 256uS High
Maximum (150) | and 30 Secs UltraHigh

7.6.5 Implementing Dynamic2
To use Dynamic2, select the DynamicRate property to Dynamic2Custom.

The Dynamiclnterval property, only applicable with Dynamic2, allows the user to
configure a custom collection sync rate (between 256uS and 30 Seconds). If zero is
selected, Dynamic2 mode runs 'flat out' i.e. as fast as possible.

Apart from when running 'flat out', the MinimumInterval method, only applicable with
Dynamic2, returns the minimum valid Dynamiclnterval allowed for the current set-up.

Apart from the extra properties, using the Orbit Library with Dynamic2 is the same as
for using traditional Dynamic.

502989 - Orbit3 Software manual Issue 14 Page 19 of 94

7.6.6 Dynamic Mode System Constraints

For the DP, LE and AIM Modules only, care should be taken to ensure that the reading
rate (Averaging) is set high enough for the faster Dynamic collection rates, otherwise
loss of information will occur.

Therefore, the Measurement Bandwidth and the Dynamic Collection Rate should be
programmed compliant with the table below:

Measurement Collection Rate
Bandwidth (Hz) (Readings per second)
450 4K Mode

420 4K or 2K Mode
320

200

100

50 4K, 2K or 1K Mode
25

12

6

The programming of the correct Bandwidth and Register Output Rate is the
responsibility of the user. The Modules will not provide error checking.
See Programmable Electrical Measurement Bandwidth

7.6.7 Dynamic Data
The readings returned from a collection using the Orbit Library is contained in the
OrbitDynamic DynamicData property. This object contains:
+ Results of each reading along with any error that occurred.
+ CollectionStatus of the dynamic collection as a whole.

It is important to check the CollectionStatus and Reading errors to ensure valid data
has been collected.

7.6.8 Dynamic External Master Mode

Dynamic mode can also be configured to have an external master.

By default, syncs are triggered (at the specified collection rate) by the Orbit Controller.
Therefore the readings are time based.

However, when a network is set into dynamic external master mode; triggering of
syncs is handled by the external master, usually in the form of an (Encoder Input
Module (EIM). This module can then trigger syncs that are angle based.

This is of particular use when measuring rotating parts.

Note that in this mode, the EIM triggers the syncs. Therefore, it will not be part of the
dynamic collection itself.

Also note that an EIM can also be used with a Linear Encoder. In this case, readings
would be Displacement based.

502989 - Orbit3 Software manual Issue 14 Page 20 of 94

The external master is selected by setting the OrbitDynamic MasterAddress property
to the module address of the EIM to be used as external master. The EIM master only
triggers sync to modules with lower addresses. Therefore, the EIM master should have
been previously set to be the last addressed module on the Orbit Network.

The EIM master should have its DynamicMasterMode and TxSync properties set as
well as the OrbitDynamic MasterAddress property should be set to the address of the
EIM master.

Note. When Dynamic master completes, the Ref Action settings on the Dynamic
master module are reset to none.

7.6.8.1 EIM DynamicMasterMode Property

A variety of settings are available to start triggering Syncs from the EIM. The
DynamicMasterMode property can be set to Start triggering:

* Immediately (Instant).

» Until a certain number of counts have occurred (HoldOff). The EIM HoldOff
property contains the number of counts to hold-off for.

» Until the encoder's reference mark has been passed. EIM reading zeroed
(Refaction_Reset).

» Until the encoder's reference mark has been passed. EIM reading preset
(Refaction_Preset).

7.6.8.2 EIM TxSync Property

In order to trigger syncs from the EIMs at a certain multiple of counts, the TxSync
property is provided.

(e.g. in Dynamic 4k mode for an encoder with 3,600 counts per revolution, setting
TxSync to 10 will produce 1 sync every 10 counts = 1 per degree)

Traditional dynamic rates (2k and 1k) required extra Syncs to transfer a block of data in
external master mode. This should be taken account of if using these modes.
The table below shows how many syncs per block are required for different collection

rates.
Collection Rate Syncs per block
4k 1
2k 2
1k 4
Dynamic 2 1

Therefore, the TxSync value set will be lower than expected (divided by the Syncs per
Block value).

(e.g. in Dynamic 2k mode for an encoder with 3,600 counts per revolution, setting
TxSync to 5 will produce 1 block of readings for every 10 counts = 1 per degree)

Use Dynamic2 to avoid this issue.

502989 - Orbit3 Software manual Issue 14 Page 21 of 94

7.6.8.3 Sync Pulse Rate when using EIM as a Sync source
When using an EIM to generate Sync pulses the rate is determined by several factors:

* Encoder rotation speed

* Number of encoder pulses per revolution

* Number of encoder pulses required per Sync pulse
* Readinglnterval property if using Dynamic2 mode.

Since the Orbit EIM Dynamic system is based around a minimum time between Syncs,
it is possible to violate this timing (e.g. by rotating the encoder too quickly).
For this reason, the calculation below should be made to guarantee reliability.

1

[P/ TxSync 3 MinSyncGap

Maximum speed (Revolutions per second) =

Where P = Encoder pulses per revolution

Example with P = 3600 (Encoder with 3600 pulses / rev), TxSync = 10 and
MinSyncGap = 290uS (minimum with EIM in Dynamic master mode)
(Note: if using Dynamic2: MinSyncGap = Minimuminterval() + 34uS

Where the 34us is due to the EIM update rate)

Maximum speed = 1/[(3600 / 10) * 290*10%] = 9.57 revs / Second

If this maximum speed is exceeded, the collection will will automatically be stopped
and a 'Sync Timing Violation' error will be assigned to OrbitDynamic status property by
the Orbit Library.

Note that this calculation assumes a constant speed throughout. As this is rarely the
case in practice, the practical maximum speed will be lower than the calculation
suggests.

The EIM will have also detected the timing violation and set its error status, if the EIM
is read via the OrbitModule ReadInCounts or ReadinglnUnits properties, an ‘Encoder
Module Sync Gap Error’'will be reported. This can be cleared by using the
ModuleStatus UpdateStatus method.

7.6.9 Requirements for Dynamic Mode

The Dynamic measurement system requires a USBIM controller (Mark 2 or later) to be
installed.

For module compatibility, refer to Module Compatibility

For controller compatibility, refer to Controllers & Software

To be able to use Dynamic mode, ensure that you are running the latest software for
modules, controllers and Orbit3 Support Pack For Windows.

Should problems occur, the Orbit3 Reporter should be run to check the firmware /
software of the Orbit Measurement system connected.

7.6.10 Hints and Tips on Using Dynamic Mode
+ Make sure your software & firmware is up-to-date for running dynamic mode.

* Refer to the Orbit3 Code Examples and Orbit Library Test whilst writing any code.

502989 - Orbit3 Software manual Issue 14 Page 22 of 94

» See the Orbit Library Code Reference.

» If using Orbit3 modules and controllers, the status LEDs will be lit for the duration of
the collection on both (modules and controllers) giving a visual indication of correct
operation.

» If using external master mode and the master EIM does trigger readings, the EIM
could be counting in the wrong direction. Confirm that when the encoder is rotated
the direction of count is as expected (see below).

Note:

TxSync is positive (e.g. TxSync = 5) the EIM will be expecting the count to increase
when the Encoder is rotated.

TxSync is negative (e.g. TxSync = -5) the EIM will be expecting the count to
decrease when the Encoder is rotated.

502989 - Orbit3 Software manual Issue 14 Page 23 of 94

file:///Z:/Engineering/GDavis/Pending_stuff/EDCR22559%20o3spw/502989/source/502989%20-%20Orbit3%20Software%20manual.odt#4.2.2.Orbit%20Library%20Code%20reference%7Coutline

7.6.11 Dynamic Schemes

The example scenarios / schemes illustrate how dynamic mode operates.
Refer to the Orbit3 Code Examples, Orbit Library Test and the Orbit Library Code
Reference for more details

7.6.11.1Dynamic Scheme 1 — USBIM controller as the Sync source

This scenario is used to illustrate measuring the profile of a rotating cam shaft when
time triggered readings are required.

In this example, a cam shaft has eight DPs (Digital Probes) measuring various
positions. A motor rotates the cam shaft.

The eight DPs should be synchronized together — i.e. they should all take their
readings at the same time with no skew.
The readings are desired to be 1 millisecond apart.

Dynamic 2 mode can be used in this particular case to read every 1000us. Enough
readings should be taken to ensure that a complete cycle has taken place.

TO PC

_— CAM SHAFT]

Dynamic Capable Modules
(Digital Probes Shown)

Power Source _I | | | | | | | |

If a cable is required, use
High Performance Orbit
cable (See Orbit3 .NET

System Manual)

Typical application using an USBIM controller as the Sync source

Refer to the Dynamic Modes 1 & 2 Code 'Walkthrough',

502989 - Orbit3 Software manual Issue 14 Page 24 of 94

file:///Z:/Engineering/GDavis/Pending_stuff/EDCR22559%20o3spw/502989/source/502989%20-%20Orbit3%20Software%20manual.odt#4.2.2.Orbit%20Library%20Code%20reference%7Coutline
file:///Z:/Engineering/GDavis/Pending_stuff/EDCR22559%20o3spw/502989/source/502989%20-%20Orbit3%20Software%20manual.odt#4.2.2.Orbit%20Library%20Code%20reference%7Coutline

7.6.11.2Dynamic Scheme 2 - Encoder as the Sync source

This scenario is used to illustrate measuring the profile of a rotating cam shaft when
angle triggered readings are required.

In this example, a cam shaft has four DPs (Digital Probes) measuring various
positions. A motor rotates the cam shaft and a rotary encoder, connected to a EIM
(Encoder Input Module), measures the angle of rotation (3600 pulses per rev).

The four DPs should be synchronized together — i.e. they should all take their readings
at the same time with no skew, once per degree of rotation.
Enough readings should be taken to ensure that a complete cycle has taken place.

External Master Dynamic mode with Dynamic2 rate can be used in this particular case
to trigger syncs from the EIM. With Dynamic2, 3600 counts / revolution and one
reading per degree, TxSync should be set to 10 (See EIM TxSync Property).

Rotary — CAM SHAFT)

Encoder .

TOPC

Dynamic Capable Modules
(Digital Probes Shown)

Power Source
If a cable is required, use | | | | |
High Performance Orbit

cable (See Orbit3 .NET
System Manual)

Typical application using an Encoder Input Module (EIM) as the Sync source

Refer to the Dynamic External Master Mode Code 'Walkthrough' for a code
example.

502989 - Orbit3 Software manual Issue 14 Page 25 of 94

7.7 READING RATE COMPARISON
7.7.1 USBIM MK2 Controller reading rates

Module Reading Rates For Different Orbit Modes

4500
Dynarnic 4k
4000 ﬁ/
Test Details
PC: Quad core 2.8GHz 4GB RAM
2500 USEIM Mk2 Contraller
Orbit Ultra Speed used for
3000 ; Mormal Read
- i Dynamic 2
s 1 E Read Burst Maormal Read
5 2500 g !
] T T R (WU~ S
wn i T e Orbit High Speed used for g Dynam?c
) \ ! " Dynamic | e Dynamic 2
._% 2000 __' é s — — Read Burst
] K—__\
[1] \ I| H Y
% I b
1500 B .
".___5_ Dynamic 1k \u““nu“uuun
T
1000 sy
el ‘\Maximum Dynamic n"“““mﬂ%ﬂ%
N~ Modules = 31 ssne
" _—h_ T -
D T T T T T T T T T T T T T

0 10 20 30 40 a0 g0 70 80 80 100
Number Of Modules

110 120 130 140 150

The graph shows a comparison of the reading modes available using the USBIM MK2

Controller.
Note that reading rates will vary with differing PC systems.

Example.

From the graph, for 50 Modules with Readburst in Ultra speed mode, each Module

has a reading rate of approximately 500 readings per second.

This equates to a combined throughput of 50 * 500 = 25000 readings per second.

» Clearly, for larger networks, the advantages of Readburst and Dynamic2 can be

clearly seen.

502989 - Orbit3 Software manual Issue 14

Page 26 of 94

7.7.2 ETHIM Controller reading rates

1000

Module Reading Rates For ETHIM

900

800

700

Test Details

600

PC: Quad core 2.8GHz 4GB RAM
ETHIM Controller

500

Readings/Second

400

—&— ReadBurst (Low Speed)

300

ReadBurst (High Speed)
e Normal (Low Speed)
+«— Normal (High Speed)

200

100 -

o, s M esssssy,

a,
a,

AAAAAAAAAAAAAAA

xxxxx

22

The graph shows a comparison of the reading modes available using the ETHIM

o :ﬁ....:..ta*mmmw

10 20 30 40 50 60 70 80 90
Number Of Modules

Controller.
Note that reading rates will vary with differing PC systems.

Example.

From the graph, for 50 Modules with Readburst in High Speed mode, each Module

100

T y y T

110 120 130 140

has a reading rate of approximately 120 readings per second.

This equates to a combined throughput of 50 * 120 = 6000 readings per second.

Whereas with normal reads, we can only achieve 9 readings per second,
i.e. 50 x 9 = 450 readings per second.

502989 - Orbit3 Software manual Issue 14

Page 27 of 94

7.7.3 RS232IM MK2 Controller reading rates

Module Reading Rates For RS232IM

600

500

400

&\ Test Details

PC: Quad core 2.8GHz 4GB RAM

—*— ReadBurst 115200 (Low Speed)

—e— ReadBurst 115200 (High Speed)
RS232IM Controller

Readings/Second
w
S
S

- -+ --Normal 115200 (Low Speed)

200 Tested at 115200 Baud

N

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Number Of Modules

Normal 115200 (High Speed)

The graph shows a comparison of the reading modes available using the RS232IM
MK2 Controller.
Note that reading rates will vary with differing PC systems.

Example.

From the graph, for 50 Modules with Readburst in High Speed mode at an RS232 rate
of 115200 Baud, each Module has a reading rate of approximately 25 readings per
second.

This equates to a combined throughput of 50 * 25 = 1250 readings per second.
Whereas with normal reads, we can only achieve 5 readings per second,

i.e. 50 x 5 = 250 readings per second.

7.7.4 WIM Controller reading rates

The WIM is intended for static measurements of a typical 25 readings per second due
to the latency in Bluetooth communications.

To optimise speeds for multiple probe systems, Readburst is recommended. In this
mode it is possible to maintain the 25 readings per probe.

Example. With 8 probes at 25 readings per probe = 8 x 25 measurements per second.

7.8 SUMMARY

When data is needed quickly for processing on the spot, ReadBurst should be used.
When data needs to be collected over a period of time for processing after the
collection, Dynamic 2 should be used. For use with older, slower hardware, or
integrating Orbit 3 hardware with a PLC, Buffered mode is available.

502989 - Orbit3 Software manual Issue 14 Page 28 of 94

8 ORBIT FEATURES AND COMMANDS
8.1 HOTSWAP

Note: To use this mode in its simplest form requires Orbit3 compatible TCONS and
Modules.

However to fully use this mode requires one of the following Orbit Controllers: USBIM
MK2, RS232IM, RS232IM MK2 or ETHIM and the Orbit Library.

Hot Swap is a feature of Orbit3 and is the ability to 'assume' a module's Orbit identity.
The identity 'assumed' is stored in the module's T-Con (only written after successfully
adding a module using the Add Module, Notify Add Module, or Ping methods). This
feature is particularly useful when replacing a module (but leaving the original T-Con in
place, which contains the stored / original Orbit identity). The new (replaced) module
automatically ‘assumes' the original Orbit identity (from the T-Con) on power-up (if
compatible**).

This means that after replacing a module, operating software does not need to change
as all module identities are effectively the same as they were.

A further feature of Hot Swap mode is to store the module's last known address in the
T-Con. This address is 'assumed' on power-up (if compatible**). This means that after
initial set-up, operating software can be written / modified to be a more flexible and
simpler design. See theFindHotSwapped section for more details.

Notes

The module identity returned via BaseModulelD is that of the actual Orbit identity, not
the 'assumed' one.

The ModulelD is the identity that was used to set up the device (which could be a
HotSwapped identity).

In normal operation, the module Orbit identities and addresses are usually the same
as they were the previous time, hence there is no need to 'assume' the Orbit identity.

** A compatible module is the same module type and stroke. For example a 2mm
Digital probe is only compatible with another 2mm Digital Probe. Incompatible
modules indicate this by flashing the red status LED.

Note that incompatible modules do not ‘assume' Orbit identities and addresses.

To clear an incompatible module, simply add this module (using the AddModule or
NotifyAddModule methods) to the Orbit network. This will store the module's actual
Orbit identity in the T-Con and thus clear the compatibility issue.

See HotSwap.

502989 - Orbit3 Software manual Issue 14 Page 29 of 94

8.1.1 Using Orbit3 without Hot Swap
Question. What happens if you don’t want to use the Hot Swap function?

Answer. You can use the system normally without Hotswap.
Basically it's transparent unless you choose to take advantage of it.

If you don’t want to use Hotswap, don’t change anything, it'll just work
as it always did. Just ‘Notify’ and ‘Set Address’ as normal.

Summary
* ‘Notify’ always responds with the Module’s ID irrespective of what is stored in the
TCON.

+ ‘ldentify’ will return the details of the module and not the details stored in the TCON.
Note. If the module’s status LED flashes, (at 4 times per second), due to a
HotSwap error, the error condition will be cleared by a ‘Set Address’ command to the
modules ID.

- The most likely cause for the error being the Module being a different type or stroke
to the one previously plugged into the TCON.

8.2 FINDHOTSWAPPED

To use this mode requires one of the following Orbit Controllers: USBIM MK2,
RS232IM, RS232IM MK2 or ETHIM and the Orbit Library along with Orbit3 compatible
TCONS and Modules.

This function scans the selected Orbit network for hot swap 'assumed' addresses. This
allows modules to be communicated to without having to use the Add Module, Notify
Add Module, or Ping methods each time.

Note that this feature is one command only.

Note also that the Add Module, Notify Add Module, or Ping methods need to be called
once, to initially store the T-Con data (hot swap 'assumed' addresses). This operation
would only need to be performed once and could use standard utility programs to
action this (avoiding the need to write custom software).

Note that if modules have been altered (e.g. a module has been removed), non
contiguous addresses (i.e. there is a gap) will mean that addresses after the gap will
be ignored.

For example, if there are modules with T-Con addresses:1,2,3,5,6 then only 1,2,3 will
be setup as there is a gap between 3 and 5, i.e. 5 & 6 are not set up.

See FindHotSwapped.

8.3 CLEAR TCONS

To use this mode requires the Orbit Library along with Orbit3 compatible TCONS and
Modules.

This function clears the T-Con HotSwap data (that have a module attached).

It should only need be used when rebuilding systems from parts from existing
systems, in order to clear conflicting hotswap data.(ie 2 TCONS with the same
address data). See Clear TCON Memory.

502989 - Orbit3 Software manual Issue 14 Page 30 of 94

8.4 PING

To use this mode requires one of the following Orbit Controllers: USBIM MK2,
RS232IM, RS232IM MK2 or ETHIM and the Orbit Library along with Orbit3 compatible
TCONS and Modules.

This Orbit3 command interrogates the specified Orbit network to find all modules
connected on it.

Each module found will be set-up / added in a process that takes about 20 seconds.
Orbit modules that have already been added (using Add Module, Notify Add Module,
or Ping methods) will not be picked up by a subsequent Ping.

Note: that due to the way the OrbitPing command works, the order (address) in which
the modules are found may be different each time. Therefore, the order may need to
be changed using the 'Remaplindex' and 'ApplyRemap' methods.

See Change Address.

Ping can be used in conjunction with the 'Save' method to quickly configure a system
with the modules found.

8.5 READINGINUNITS
To use this mode requires the Orbit Library along with Orbit2 and Orbit3 Modules.

This feature allows Orbit modules to simply return their reading in the required Units
Of Measure (UOM). For example, a 2mm Digital probe at mid position would return
1mm, whereas 'ReadingInCounts' would return 8192 counts.

For Orbit3 modules where they operate over a fixed range and can exceed the range
(I.e. go over or under range) the reading is limited to each end of the range (ie for 4-
20mA AIM, 3mA would return 4, and for a 10mm DP at position 10.2mm it would return
10mm).

If the module is at the end of its range, the Orbit Error code should be evaluated to
identify if you are over or under range.

For Orbit3 modules with a fixed measurement range that can be zeroed (eg. Confocal
System) it is not possible to limit to the range so on error conditions a reading of NaN
(not a number) is returned.

8.6 ORBIT SPEED

The Orbit Network Speed (Baud Rate) can be set or read using the NetSpeed property
of the Network.

The available speeds of both Modules and Controllers can be obtained using their
AvailableSpeeds properties.

The available speeds will be dependent on both the Orbit Controller and the Module.
i.e. if the Module is 'Ultra’ speed capable, but the Controller (such as ETHIM) is only
'High' speed capable, then 'High' speed will be the maximum achievable speed.

The Orbit Library automatically updates the Network speed (and available speeds)
depending on the combination of Controller and connected Modules.

Orbit Network Baud Rate (Bits/Sec)
Speed

502989 - Orbit3 Software manual Issue 14 Page 31 of 94

Standard 187.5k (Default)
High 1.5M
Ultra 2.25M

Note. For both High and Ultra speeds, ensure that the recommended Orbit cable and
power supply configuration is used. See the Orbit 3 System manual for details.

9 ORSBIT LIBRARY

9.1 OVERVIEW

The following diagram shows a top-down view of the Orbit Library.

The Primary object is OrbitServer; beneath this are other objects that are generated
automatically when OrbitServer is created.

Each object has a set of functions or ‘Methods’ that are used to initiate specific actions
and a set of parameters or ‘Properties’ that can be read or set.

Primary OrbitServer Object > ‘ Orbitserver |

Networks Object> | OrbitNetworks

Network Object > | OrbitNetworkO | | OrbitNetwork 1

Modules Object > | OrbitModules |

OrbitModules

OrbitModule0 OrbitModule1 Orbit Module2

Module Objects

For a more detailed diagram of the class hierarchy, see the UML diagram provided
with the Orbit3 Support Pack for Windows installation.

502989 - Orbit3 Software manual Issue 14 Page 32 of 94

Primary Object

Object name: OrbitServer

Orbit Server is the primary Object in the Orbit Library hierarchy.

It contains the whole Orbit Measurement system, connecting to it, disconnecting from
it and providing system wide controls, providing the network's object to the users and
maintaining it.

On connecting to the OrbitServer, the OrbitNetworks object is created representing all
'discovered' / available Orbit Networks.

9.1.1 Networks Object

Object name: OrbitNetworks

The Networks object exists available networks on the PC, providing information about
how many networks are available and providing a simple interface to them and
provides the individual Network objects (via an index).

9.1.2 Network Object

Object name: OrbitNetwork.

The Network Objects are a software model of the network channel hardware,
providing information about the network and controls (such as speed settings), also
providing and Maintaining the Modules Object.

Each Network Object represents a single Orbit network channel.

Individual OrbitNetwork objects can be obtained by accessing the OrbitNetworks
object via an index.

9.1.3 Modules Object

Object name: OrbitModules.

Object for containing all the OrbitModule objects currently active on a specific
OrbitNetwork.

The Modules Objects maintains the individual module objects providing interfaces for
adding and removing modules and for directly interfacing with the individual module
objects (for reading and setting of their properties etc).

It manages all the OrbitModule objects currently active on a specific OrbitNetwork.
Individual OrbitModule objects can be obtained by accessing the OrbitModules object
via an index.

Note that individual modules are not 'discovered' as they are for Orbit Networks when
Orbit Server is connected to — they are added using the methods made available in
the OrbitModules object.

9.1.4 Module Object

Object name: OrbitModule.

Represents a single Orbit module.

The Module Obijects provides a model of each individual connected orbit module
exposing functions and properties that enable to user to read the modules and set
their properties.

Each Module Object represents a single Orbit module.

502989 - Orbit3 Software manual Issue 14 Page 33 of 94

9.2 REFERENCING THE ORBIT LIBRARY

In order to use the Orbit Library a reference to it needs to be created.
To do this with C# Express 2010 proceed as follows:

Add a Reference by Project->Add Reference
This will bring up the 'Add Reference' window. Select the 'Browse' tab.

@ WindowsFémsﬁppllcatinnl - Microsoft Visual G& 2010 Express (A
File Edit View Project | Debug Data Format Tools Window Help

j __J - Lj lh =] Add Windows Form...
.JL = & || 8 AddClass.. Shift+Alt+C |
| 2 Add Mew fem... Ctrl+Shift+ A
Forml.cs [Des —
24 Add Existing Item... Shift+Alt+A
Add Reference..,

Add Service Reference..,
Set as StartUp Project

=] WindowsForm sApplication] Properties...

Publish WindowsFormsApplicationl
I

5

b
pes)
Q
=]
(=
=]
=
Q
o
8
o
v
Q
=
A
m
o

Navigate to C:\Windows\System32 (or the location of the Windows folder if not using

drive C:)
Select 'OrbitLibrary.dll'. Click OK

[] WindowsFormsApplication1 - Microsoft Visual C# 2010 Express (Ad rata EEnT=T
File Edit View Project Debug Data Tools Window Help
el - N R B -] - | A e R
PRl e T W IR el B n | 2SS []2
Pl Forml.cs [Design) X B9 solution Explorer -3 x
g L Farm] === 3 Solution 'WindowsFormsApplicationl’ (1 project)
1 4 [Fl WindowsFormsApplicationl
& ¢ [Properties
s > [References
g b [Forml.cs
3 4] Program.cs
(8] Add Reference < / (L2 [
o
[.NET [com [Projects| Browse |Recent|
Look in System32 - @ @ = Er
5 Name . Date modified
< orbit_if.dll 11/05/2011 15:11
[Orbitcom.dil 11/05/2011 15:11
{5 GrbLibrary.di AL
| OrbitLibrary.tlb 06/06/201114:39 | |
%) osbaseln.dl 14/07/2009 02:16
8 osk.exe 14/07/2009 02:14 WindowsFormsApplicationl Project Properties
es B nceenisct dll 1407 3000 NIAR ¥ x [
St RLU’*‘ s I < = il] I Bl e
Jlan| =& P T o Project File WindowsFormsApplication]
Files of typs: | Component Files (*.dll:"lb;" olb;" ocox;" exe:~ manifest) v]
- | Project File
The name of the file containing build, configuration,

and other infermation about the project.

| =BG = Find Results
B Error List

502989 - Orbit3 Software manual Issue 14 Page 34 of 94

In the References section of the Solution Explorer, the OrbitLibrary reference should
be visible.

4] WindowsFormsApplication] - Microsoft Visual C# 2010 Express
File Edit View Project Debug Dats Teols Window Help
PS8 _lj\k"-”-lﬂlﬁ IL:‘fr“}gllﬁ“;

B0 & | T o | e T | &8 er [EHE D A=

« Solution Explorer 1%
EETG
3 Solution 'WindowsFormsApplicationl' (1 project)
4 (5 WindowsFormsApplicationl

= [Zd| Properties

FormL.cs [Design]

a;' Forml

4 [References
/3 Microsoft.CSharp

- 3 Onoilibrary
-3 System
/ -3 System.Core
.3 System.Data
-3 System.Date.DataSetExtensions

-3 System.Deployment
-3 System.Drawing

S30IN05 eje(|§ %0g|oo]

-3 System.Windows.Forms
-3 System.Xml
< Systern.Xml.Ling

=] Forml.cs

o 4] Program.cs

Properties v X

Find Results - e a:: 4] | = | =

@A =% (Name) Form1 -

> AcceptButten (nene)
AccessibleDescription |
AccessibleName |
AccessibleRale Default LS
AllowDrop False
AutoScaleMode Font
AutoScroll False
AutoScrellMargin 0,0
AutoScrollMinSize 0.0
AutoSize False
AutoSizeMode GrowOnly
AutoValidate EnablePreventFocusChar
BackColor [] contral
Backgroundlmage [| (none) -
~ fi (Name)
v Indicates the name used in code to identify the
object.

| Rl 5 Find Results

‘.'(Error List

502989 - Orbit3 Software manual Issue 14 Page 35 of 94

9.3 ORBIT LIBRARY COM INTERFACE

The Orbit Library is designed to work as a COM library to allow interfacing to older,

legacy programs that do not support the .NET Framework (e.g. Microsoft Excel 97

VBA).

See COM Interface for more details.

9.4 MIGRATING FROM THE ORIGINAL ORBIT COM LIBRARY

The basic hierarchy of the Orbit Library is similar to that of the Orbit COM in that it
uses an OrbitServer, OrbitNetwork(s) and OrbitModule(s).
However, the internal working of the OrbitLibrary is of a different structure.

Therefore, code written using the Orbit COM is not compatible with the Orbit Library.

The following section details a comparison between methods (using C Sharp as an

example).

Action

Orbit Library

Orbit COM Library

Reference Library

Reference: OrbitLibrary.dll

Reference: OrbitCOM.dII

Create Library

OrbitServer Orbit = new

OrbitServer Orbit = new OrbitServer()

connected networks

Instance OrbitServer()

Connect Orbit.Connect() Orbit.Connect()
Disconnect Orbit. Disconnect() Orbit. Disconnect()
Number of Orbit.Networks.Count Orbit.Networks.Count

Add a module to
Orbit Network 0

Orbit.Networks[0].Modules.A
ddModule()

Orbit.Networks[0].Modules.Add (String
ModuleName)

Notify and add a
module on Network
0

Orbit.Networks[0].Modules.N
otifyAdd()

Orbit.Networks[0].Modules.NotifyAndA
dd (String ModuleName)

Get Identity of
Module 0 on
Network O

String MyOrbitID =
Orbit.Networks[0].Modules[0]
.ModulelD

String MyOrbitID =
Orbit.Networks[0].Modules[0].Modulel
D

Read Module 0 on
Network 0 in Units of
measure

Double MyReading =
Orbit.Networks[0].Modules[0]
.ReadinglnUnits

Double MyReading =
Orbit.Networks[0].Modules[0].
ReadCurrentinUOM

Preset Module 0 on
Network O to 100
Counts

Orbit.Networks[0].Modules[0]
.PresetinCounts = 100

Orbit.Networks[0].Modules[0].SetPrese
t(100)

As can be seen, the Orbit Library is very similar to the Orbit COM Library in terms of its

usage.

Other modes of operation (e.g. dynamic) are improved in the Orbit Library and thus

there is less similarity here with the Orbit COM Library.
Refer to the Example Code - Walk through and Orbit Library Test for more detailed

code examples.

Note that the Orbit Library has extra members available for each class (i.e. modes,
controllers and modules) that are provided to produce less complicated code

implementation. It also has built in comprehensive error checking and automatically

deals with compatibility / legacy issues.

502989 - Orbit3 Software manual

Issue 14

Page 36 of 94

10 EXAMPLE CODE - WALK THROUGH

10.1 OVERVIEW

The Orbit Library provides an accessible way to receive readings with a variety of
methods and performance specific modes to cater for a wide range of metrology
needs. This section takes the supplied examples included with the Orbit3 Support
Pack for Windows, and expands upon them.

See the Examples installed as part of the Orbit3 Support Pack for Windows for full
example code listings. Other examples are taken from Orbit Library Test; the project
files for this application, including source code listings, are also available within the
Orbit3 Support Pack for Windows.

As with any .Net C# library, suitable exception handling should be employed.

10.1.1 COM Interface

A COM (Component Object Model) interface is supplied with the OrbitLibrary,
providing a binary interface for the OrbitLibrary.

COM interfaces have bindings for C++, Visual Basic and Delphi applications allowing
for easy and accessible implementation of the Orbit Library.

Examples of interfacing to the COM are also included within this document as well: the
VBA example Orbit3Excel COMExample.xls, and the C++ example
Orbit3CppComExample.

Interface to COM objects and methods of creating instances of them, varies from
compiler to compiler. The C++ example given is the method for Borland C Builder 5.

In general a create object will need to be called, rather than new.

More recent C++ compilers do not require the get_Item method and instead abstract it
to use array indexers for example Modules->get_Item(0); would be Modules[0]; for
example Visual Studio.

10.2 CONNECTING TO THE ORBIT LIBRARY

The OrbitServer makes up the core of the Orbit Library, allowing software developers
to integrate the Orbit3 series into production and research applications. It is through
the core OrbitServer instance that all communication with Orbit3 is mediated.

The following sub-sections provide explanations, examples and advice for creating an
instance of the OrbitServer and talking with the connected Orbit3 Controllers. Each
Controller can have multiple Orbit Modules connected by a serial bus. The controller
is responsible for each of these modules, forming a network. A network may only have
one controller attached to the bus.

The controllers handle all communication with the Modules and OrbitServer handles
all communication with the controllers.

To get data from modules, an instance of the OrbitServer needs to be created and a
connection established. The OrbitServer shall then search for any registered (see
Orbit3 Registration) and connected controllers. These are made available in the form
of OrbitNetwork objects, which in turn, contain OrbitModule objects that represent the
Orbit3 hardware probe Modules.

502989 - Orbit3 Software manual Issue 14 Page 37 of 94

10.2.1 Initialising The OrbitServer

To create an instance of the OrbitServer a reference must be made to OrbitLibrary.dll
assembly. See Referencing the Orbit Library
The Orbit Library types must then be imported from the Solartron.Orbit3 namespace.

C# (.NET)

using Solartron.Orbit3;

C++ (COM)
#include "Orbit3CppCOMExample.h"

An instance of the OrbitServer must then be created. It is recommended that a
reference to the OrbitServer instance is maintained throughout the duration of the
application to avoid having to reconnect to the OrbitServer.

C# (.NET)
OrbitServer Orbit;
Orbit = new OrbitServer();

C++ (COM)
OrbitServerPtr Orbit;
Orbit = CoOrbitServer::Create();

10.2.2 Connecting to The OrbitServer

» Prior to connecting to the OrbitServer, the AllowOSSuspend property (default =
True) should be set False if required.

> If False, the Orbit Library will inhibit the operating system from entering Idle
Suspend while connected to Orbit networks.

To avoid the complexity of searching for and handshaking with the various Orbit
Controllers, the Connect() method is provided. On calling this Connect method,
OrbitServer runs setup routines and builds an accessible collection of OrbitNetwork
objects pertaining to the connected / discovered Orbit Controllers.

The Connect() method is overridden for WIMs (see WIM Controllers). The standard
Connect() method defaults to not finding WIMs.

C# (.NET)
Orbit.Connect () ;

C++ (COM)
Orbit->Connect () ;

The connection process is time consuming due to the resets and delays involved in
the process to initialise the controllers into a known and predictable state upon each
Connect() call.
The OrbitServer.Connected bool is exposed to provide access to the OrbitServer's
connection status.
» If unable to connect, the OrbitServer shall throw an exception detailing the fault.
» If the call to Connect() succeeds, OrbitServer.Connected is set true.
Important!
+ There can only be a single instance of the OrbitServer connected at any one

502989 - Orbit3 Software manual Issue 14 Page 38 of 94

time on a system. This is enforced through a file handle mutex that is created
on Connect() and released on Disconnect().

» If another instance of the OrbitServer attempts to connect to Orbit, when
another instance has already been connected, the OrbitServer will throw an
exception stating that the Orbit Library is already in use.

10.2.2.1 WIM Controllers

With WIM controllers (which operate via Bluetooth), the Connect() method can take as
much as 30 seconds to complete. In order to avoid this delay (e.g. when connection to
WIM controllers is not required), an overridden function is provided:

C# (.NET)
Orbit.Connect (bool FindWIMs) ;

C++ (COM)
Orbit->Connect (bool FindWIMs) ;

« If FindWIMs is set true, this connects to all available orbit networks (Including
WIMs).

* If FindWIMs is set false, this connects to all available orbit networks (Excluding
WIMs)

+ The standard Connect() method defaults to FindWIMs = false.

+ If already connected to Orbit, a Connect with FindWIMs set true will connect to
any further WIMs found.

10.2.3 Disconnecting from The OrbitServer

When closing an application, the OrbitServer.Disconnect() should be called to allow
the OrbitServer to shutdown and close communications with the Orbit Controllers
correctly.

* On disconnecting, the OrbitServer.Connected bool is set false.

C# (.NET)

Orbit.Disconnect () ;

C++ (COM)

Orbit->Disconnect () ;

10.3 LISTING ORBIT NETWORKS

To access network commands, a collection of OrbitNetwork objects are exposed once an
OrbitServer has been connected to. To identify an Orbit Controller, the controller's name
and type is exposed, allowing the collection to be iterated.

Cc# (.NET)
for (int networkIndex = 0; networkIndex < Orbit.Networks.Count; networkIndex++)
{
Console.Writeline (Orbit.Networks[networkIndex] .Name) ;
}
C++ (COM)
for (int networkIndex = 0; (networkIndex < Orbit->Networks->Count); networkIndex++)

{
OrbitNetworkPtr OrbNet = Orbit->Networks->get Item(networkIndex);

502989 - Orbit3 Software manual Issue 14 Page 39 of 94

cout << \t" << AnsiString(OrbNet->Name).c str() << endl;

See the Orbit Library Code Reference for detailed information on the other accessible
properties of OrbitNetwork.

10.4 ADDING ORBIT MODULES

Once connected to the OrbitServer, OrbitServer.Networks shall be populated allowing
access to controllers and modules. Each OrbitNetwork has a collection of
OrbitModules; OrbitNetwork.Modules. By default, a network shall be configured with
an empty Modules collection.

The different methods to add, remove and configure Orbit 3 modules are described in
the following sub-sections.

10.4.1 Listing Orbit Modules

Modules can be listed in the same manner networks can be listed. The listing below
print the ID for each OrbitModule connected to Orbit.Networks[NETINDEX].

Cc# (.NET)
const int NETINDEX = 0; //Network whose modules shall be listed.
for (int moduleIndex = 0; moduleIndex < Orbit.Networks.Count; moduleIndex++)
{
Console.WriteLine (Orbit.Networks. [NETINDEX] .Modules [moduleIndex] .ModulelID) ;
}
C++ (COM)

OrbitNetworkPtr OrbNet = Orbit->Networks->get Item(NetIndex) ;
for (int moduleIndex = 0; (moduleIndex < OrbNet->Modules->Count); moduleIndex++)
{

OrbitModulePtr OrbModule = OrbNet->Modules->get Item(modulelndex);

cout << \t" << AnsiString (OrbModule->ModulelID) .c str() << endl;

See the Orbit Library Code Reference for detailed information the other accessible
properties of OrbitModule.

502989 - Orbit3 Software manual Issue 14 Page 40 of 94

file:///Z:/Engineering/GDavis/Pending_stuff/EDCR22559%20o3spw/502989/source/502989%20-%20Orbit3%20Software%20manual.odt#4.2.2.Orbit%20Library%20Code%20reference%7Coutline
file:///Z:/Engineering/GDavis/Pending_stuff/EDCR22559%20o3spw/502989/source/502989%20-%20Orbit3%20Software%20manual.odt#4.2.2.Orbit%20Library%20Code%20reference%7Coutline

10.4.2 Add Module

OrbitModule.Modules.Add() allows a specific Orbit 3 module to be added to a network
by passing the exact module ID string of module; for example, '100C619P19'.

Cc# (.NET)
Orbit.Networks. [NETINDEX] .Modules.AddModule ("100C619P19") ;

C++ (COM)
OrbitNetworkPtr OrbNet = Orbit->Networks->get Item(NetIndex);

OrbNet->Modules->AddModule (WideString ("100C619P19"))

The Add function has been designed with a input text box in mind. An implemented
example of this can be found within the Orbit Library Test

10.4.3 Notify Add Module

OrbitNetwork.Modules.NotifyAddModule() will by default block the current thread of
execution indefinitely until a module Notifies, the Esc key is pressed, or StopNotify() is
called. The OrbitServer continuously sends notify commands to the Orbit controller,
the controller in-turn will send out notify commands along the bus to each of the Orbit
modules. This stops when either a valid ID or an error is returned. When a valid ID is
received by the OrbitServer, an address on the network is assigned to the module.
Errors received are then reported by the OrbitServer in the form of an exception with a
relevant message.

When NotifyAddModule() has been called, an Orbit3 DP for example, will notify when
the probe tip's position is physically changed, the DP will then be added to the
network.

C# (.NET)
Orbit.Networks. [NETINDEX] .Modules.NotifyAddModule () ;

C++ (COM)
OrbitNetworkPtr OrbNet = Orbit->Networks->get Item(NetIndex);
OrbNet->Modules->NotifyAddModule () ;

NotifyAddModule() shall return false if a module is not added to the network. For
details on configuring a NotifyAddModule() call, see the Orbit Library Code
Reference.

To stop a network from notifying, a call to OrbitNetwork.Modules.StopNotify() is
required. The LibraryTest application has two buttons; one for starting
NotifyAddModule(), and one to StopNotify().

10.4.4 Ping

OrbitNetwork.Modules.Ping() shall find all ping-able modules on the network and
returns the number of new modules found. The found modules are addressed and
added to the network.

C# (.NET)

int modulesFound = Orbit.Networks. [NETINDEX].Modules.Ping() ;

C++ (COM)
OrbitNetworkPtr OrbNet = Orbit->Networks->get Item(NetIndex);
OrbNet->Modules->Ping () ;

502989 - Orbit3 Software manual Issue 14 Page 41 of 94

file:///Z:/Engineering/GDavis/Pending_stuff/EDCR22559%20o3spw/502989/source/502989%20-%20Orbit3%20Software%20manual.odt#4.2.2.Orbit%20Library%20Code%20reference%7Coutline
file:///Z:/Engineering/GDavis/Pending_stuff/EDCR22559%20o3spw/502989/source/502989%20-%20Orbit3%20Software%20manual.odt#4.2.2.Orbit%20Library%20Code%20reference%7Coutline

10.4.5 FindHotSwapped

OrbitNetwork.Modules.FindHotSwapped() shall add all HotSwapCapable
OrbitModules to the OrbitNetwork when the TCON that the Orbit 3 Module is attached
to has valid entry in memory for the OrbitModule. The function returns the number of
new modules added to the network.

C# (.NET)
int modulesFound = Orbit.Networks. [NETINDEX] .Modules.FindHotSwapped() ;

C++ (COM)
OrbitNetworkPtr OrbNet = Orbit->Networks->get Item(NetIndex) ;

OrbNet->Modules->FindHotSwapped () ;

This command allows an operator to physically hot-swap one Orbit 3 Module for
another, then call FindHotSwapped() to rectify any differences in software.

The Orbit 3 Modules must be of the same device type and have the same stroke to
qualify as valid entry in a TCON's memory.

When disconnecting from the OrbitServer, TCON memory is not cleared, thus
FindHotswapped() can be used once an application reconnects to the OrbitServer to
recover the previously addressed OrbitModules.

10.4.6 Delete Module

To remove a specific OrbitModule from an OrbitNetwork, the OrbitModule's index
number in the OrbitNetwork.Modules collection can be specified, or the OrbitModule's
ModulelD string can be specified. Either variable being passed as parameters to
OrbitNetwork.Modules.DeleteModule() will result in the OrbitModule being removed
from the OrbitNetwork.

C# (.NET)
Orbit.Networks. [NETINDEX] .Modules.DeleteModule (MODULEINDEX) ;
// Or
Orbit.Networks. [NETINDEX] .Modules.DeleteModule ("100C619P19") ;

C++ (COM)
OrbitNetworkPtr OrbNet = Orbit->Networks->get Item(NetIndex) ;

OrbNet->Modules->DeleteModule (MODULEINDEX) ;
// Or
OrbNet->Modules->DeleteModule (WideString ("100C619P19")) ;

Calling DeleteModule will also clear the OrbitModule's TCON memory. Deleting a
module will re-order the indexes, to maintain contiguous addresses. For example, if
there are modules set at indexes: 0,1,2,3,4,5,6 and module 4 was deleted, then
modules at indexes 5 & 6 would be shifted down by one address to fill the gap.

10.4.7 Clear All Modules

To remove all OrbitModules from an OrbitNetwork's Modules collection, a call to
OrbitNetwork.Modules.ClearModules() is required.

C# (.NET)
Orbit.Networks. [NETINDEX] .Modules.ClearModules () ;

C++ (COM)
OrbitNetworkPtr OrbNet = Orbit->Networks->get Item(NetIndex);
OrbNet->Modules->ClearModules () ;

502989 - Orbit3 Software manual Issue 14 Page 42 of 94

This function will clear the OrbitNetwork of OrbitModules, but leave TCON memory
intact, allowing FindHotSwapped() to find HotSwapCapable OrbitModules still attached
to the OrbitNetwork.

10.4.8 Clear TCON Memory

OrbitNetwork.Modules.ClearTcons() shall remove all OrbitModules from an
OrbitNetwork, as well as clearing the memory on all TCONSs attached to the BUS that
have an Orbit 3 Module attached.

C# (.NET)
Orbit.Networks. [NETINDEX] .Modules.ClearTCons () ;

C++ (COM)
OrbitNetworkPtr OrbNet = Orbit->Networks->get Item(NetIndex);
OrbNet->Modules->ClearTCons () ;

By clearing the TCON memory, finding HotSwapCapable OrbitModules is no longer
possible.

10.4.9 Change Address

To change an OrbitModule's address, which is represented by the OrbitModule's index
within OrbitNetwork.Modules, setting OrbitModule.Remaplindex to the desired (new)
index. This should be carried out on another module (e.g. if two modules indexes are
to be swapped).

Once the remapping of addresses and indexes is configured,
OrbitNetwork.Modules.ApplyRemap() should be called to carry out the modifications.

C# (.NET)
Orbit.Networks. [NETINDEX] .Modules|[FromModuleIndex] .RemapIndex = ToModulelndex;

Orbit.Networks. [NETINDEX] .Modules [ToModuleIndex] .RemapIndex = FromModuleIndex;
Orbit.Networks. [NETINDEX] .Modules.ApplyRemap () ;

C++ (COM)
OrbitNetworkPtr OrbNet = Orbit->Networks->get Item(NetIndex);
OrbNet->Modules->get Item(FromModuleIndex)->RemapIndex = ToModuleIndex;
OrbNet->Modules->get Item(FromModuleIndex)->RemapIndex = FromModuleIndex;
OrbNet->Modules->ApplyRemap () ;

This is can be a useful tool when modules are desired to be set-up in a certain order.
Once the correct order has been established, the network can be saved using the
OrbitNetwork.Save method. This saves the network's modules to an XML file that can
be loaded next time by the OrbitNetwork.Load method.

10.4.10 Load and Save Network

Any orbit network can be loaded/saved with the OrbitNetwork.Save and
OrbitNetwork.Load Commands.

To Save an orbit network after it has been setup just call save providing a filename

that the network information should be saved to, eg:

C# (.NET)
MyNetwork.Save (FileName) ;

C++ (COM)
MyNetwork->Save (FileName) ;

502989 - Orbit3 Software manual Issue 14 Page 43 of 94

To Load an orbit network there are 2 options
1)just load the file - if one or more modules is loaded it will return true, otherwise it will

return false; note that the module count should be checked to ensure you have all the

modules.
C# (.NET)
bool ModulesLoaded = MyNetwork.Load (FileName) ;

C++ (COM)
bool ModulesLoaded = MyNetwork->Load (FileName) ;

2)Load a network with creating a mappings array where the mappings array lists the
original module address (the array index) to the current address (array value) with -1
used for the current address of missing items.

C# (.NET)

int[] ModulelndexMappings;

MyNetwork.Load(FileName, out ModulelndexMappings);

C++ (COM)

LPSAFEARRAY Mappings;
TOLEBOOL Success = OrbitNet0->Load_2(FileName, &Mappings);

502989 - Orbit3 Software manual Issue 14 Page 44 of 94

10.5 GETTING MODULE READINGS

There are two calls that are made available to receive a single reading from an
OrbitModule, OrbitModule.ReadingInCounts, and OrbitModule.ReadingInUnits. The
former returning a reading in Counts, which is a representation of the full scale
(2reselton for DP / AIM) of a module. The latter, ReadingInUnits will the return a reading
in the base units of measure (e.g. millimetres); of type double. (see
OrbitModule.ReadinglnUnits property in the Orbit Library Code Reference.

C# (.NET
int readingInCounts
double readingInUnits

Orbit.Networks. [NETINDEX] .Modules [MODULEINDEX] .ReadingInCounts;
Orbit.Networks. [NETINDEX] .Modules [MODULEINDEX] .ReadingInUnits;

C++ (COM)
OrbitNetworkPtr OrbNet = Orbit->Networks->get Item(NetIndex);
OrbitModulePtr OrbModule = OrbNet->Modules->get Item(ModuleIndex);
int readingInCounts = OrbModule->ReadingInCounts;

double readingInUnits = OrbModule->ReadingInUnits;

For taking synchronised blocks of readings for an OrbitNetwork's OrbitModules, see
ReadBurst. For recording a collection of synchronised readings from any number of
modules for processing after the collection has been completed, see Dynamic mode.

10.5.1 Configuring Modules

Due to the object orientated nature of the Orbit Library, it is necessary to cast to the
modules class to access module specific properties (such as Resolution and
Averaging on the DP).

C# (.NET)
OrbitModuleDP ModuleDP = ((OrbitModuleDP)MyNetwork.Modules [ModuleIndex]) ;
ModuleDP.Resolution = eResolution.resl8Bit;

C++ (COM)
OrbitNetworkPtr OrbNet = Orbit->Networks->get Item(NETINDEX) ;
OrbitModulesPtr OrbModules = OrbNet->Modules;
OrbitModuleDPPtr ModuleDP = (OrbitModuleDPPtr)OrbModules->get Item(ModuleIndex) ;
ModuleDP->Resolution = eResolution resl8Bit;

10.5.2 Module Status

With each reading made, OrbitModule.ModuleStatus is updated. Checking this status
is important when working with displacement probes (DP/AIM) which can go outside of
their calibrated ranges. When outside of the range, an OrbitModule shall report that it
is either UnderRange or OverRange respectfully, represented by
OrbitModule.ModuleStatus.Error.

(@ -NET
string moduleID Orbit.Networks. [NETINDEX] .Modules [MODULEINDEX] .ModuleID;
double readingInCounts Orbit.Networks. [NETINDEX] .Modules [MODULEINDEX] .ReadingInCounts;
eOrbitErrors ErrorState = Orbit.Networks. [NETINDEX] .Modules [MODULEINDEX]
.ModuleStatus.Error;
if(ErrorState == eOrbitErrors.OverRange || ErrorState == eOrbitErrors.UnderRange)

{

Console.WritelLine (moduleID + " Error: " + ErrorState.ToString()):;
} else

{
Console.WriteLine (moduleID + " Reading: " + readingInCounts.ToString());

}

502989 - Orbit3 Software manual Issue 14 Page 45 of 94

file:///Z:/Engineering/GDavis/Pending_stuff/EDCR22559%20o3spw/502989/source/502989%20-%20Orbit3%20Software%20manual.odt#4.2.2.Orbit%20Library%20Code%20reference%7Coutline

C++ (COM)

OrbitNetworkPtr OrbNet = Orbit->Networks->get Item(NetIndex) ;

OrbitModulePtr OrbModule = OrbNet->Modules->get Item(ModulelIndex) ;

AnsiString moduleID = AnsiString (OrbModule->ModulelD) ;

double readingInCounts = OrbModule->ReadingInCounts;

eOrbitErrors ErrorState = OrbModule->ModuleStatus->Error;

if (ErrorState == eOrbitErrors.OverRange || ErrorState == eOrbitErrors.UnderRange)

{

AnsiString ErrorString = AnsiString (OrbModule->ModuleStatus->ErrorString) ;
cout << moduleID.c str() << " Error: " << ErrorString.c str() << endl;
} else

{

cout << moduleID.c str() << " Reading: " << readingInCounts << endl;

}

Other errors, such as a linear encoder's over speed, or an encoder input module's
framing error will remain set until the OrbitModule's status is reset by a call to
UpdateStatus().

(@ NET
Orbit.Networks. [NETINDEX] .Modules [MODULEINDEX] .ModuleStatus.UpdateStatus () ;

C++ (COM)
OrbitNetworkPtr OrbNet = Orbit->Networks->get Item(NetIndex) ;
OrbitModulePtr OrbModule = OrbNet->Modules->get Item(ModulelIndex);
OrbModule->ModuleStatus—->UpdateStatus () ;

502989 - Orbit3 Software manual Issue 14 Page 46 of 94

10.6 READING MODES

The following sub-sections describe the methods implementation for the reading
modes provided by the Orbit Library. Each of these modes are designed for use in
differing scenarios and situations; a comprehensive guide of when and where to use
these modes can be found in the Measurement Modes section.

Note that terating through an OrbitNetwork.Modules collection and taking a reading
with getReadingInUnits/Counts on each module in quick succession is not a
recommended or precise method of taking synchronised readings.

10.6.1 ReadBurst Mode

The ReadBurst OrbitNetwork command provides a easy, precise and optimised
method of returning a collection of synchronised readings from a group of
ReadBurstCapable OrbitModules. (see ReadBurst)

A call to OrbitNetwork.ReadBurst() will take a synchronised read block of the capable
OrbitModules.

These can be accessed through the OrbitModule.Modules.ReadBurstData object.
The error state of ReadBurst call can accessed though ReadBurstData.Error.

C# (.NET)
Orbit.Networks [NETINDEX] .Modules.ReadBurst () ;
OrbitReadBurstResults ReadResults = Orbit.Networks[NETINDEX] .Modules.ReadBurstData;
// List Results
for (int Index

{

0; Index < ReadResults.NumberOfModules; Index++)

Console.WriteLine (Orbit.Networks [NETINDEX] .Modules[Index] .ModuleID +
"\t" + string.Format ("{0:0.000000}", ReadResults.GetReadingUOM (Index)) +
"\t\t" + Orbit.GetErrorString((int)ReadResults.GetReadingError (Index)) +
"\r\n");//Error status

}

C++ (COM)
OrbitNetworkPtr OrbNet = Orbit->Networks->get Item(NetIndex) ;
OrbitModulesPtr OrbModules = OrbNet->Modules;
OrbModules->ReadBurst () ;
OrbitReadBurstResultsPtr ReadResults = OrbModules->ReadBurstData;
// List Results
for (int Index = 0; Index < ReadResults->NumberOfModules; Index++)
{
OrbitModulePtr OrbModule = OrbModules->get Item(Index);
double ReadingInUOM = ReadResults->GetReadingUOM (Index) ;
int ReadingInCounts = ReadResults->GetReadingCounts (Index) ;
int ReadingError = ReadResults->GetReadingError (Index) ;
cout << AnsiString(OrbModule->ModuleID) .c str() << "\t"
<< AnsiString() .sprintf ("%$+9.5f",ReadingInUOM) .c_str () << "\t\t"
<< AnsiString() .sprintf ("$+8i", ReadingInCounts).c str() << "\t\t"
<< AnsiString (Orbit->GetErrorString(ReadingError)).c str() << endl;

The ReadBurstCapable OrbitModules must be contiguous from the first address on
the OrbitNetwork. A non-capable OrbitModule that is addressed between two capable

OrbitModules will break contiguity, cutting short the number of modules the ReadBurst
collection can collect from.

502989 - Orbit3 Software manual Issue 14 Page 47 of 94

10.6.2 Dynamic Modes 1 & 2

A Dynamic mode collection provides a fast and precise method to collect large
numbers of synchronised readings for post processing once a collection is complete
(see Dynamic Modes).

All OrbitModules connected to an OrbitNetwork must be capable of Dynamic or
Dynamic 2, represented by the OrbitModule fields DynamicCapable and
Dynamic2Capable. The OrbitNetwork's DynamicCapable and Dynamic2Capable
statuses represent the overall capability of the network, taking into account the
capabilities of all connected OrbitModules.

Dynamic mode requires that OrbitNetwork.NetSpeed is set to eNetSpeed.High.
Dynamic 2 can operate at either High or UltraHigh speeds.

A Dynamic collection consists of five stages:

. Unconfigured (dynamic disabled)
. Configured (dynamic enabled)

. Prepared

. Running (collecting data)

. Complete (data available).

The Dynamic.Enabled property represents an OrbitNetwork's dynamic enabled status.
When Enabled is false, dynamic configuration settings can be modified. Upon
changing Enable to true, the configuration settings are checked against OrbitNetwork
and OrbitModule capabilities and validated; if the current dynamic settings are found to
be correct. These configuration settings can no longer be modified; if further
modification is required, Enabled should be set back to false.

With Dynamic mode now enabled, OrbitNetwork.Dynamic.Prepare() should be called
to setup the Dynamic collection. Once prepared, the OrbitNetwork is ready start
collecting. OrbitNetwork.Dynamic.DynamicState will have changed from
eDynamicState.Inactive, to Prepared.

C# (.NET)

// Configure Dynamic Collection (see Examples support pack for examples)

Orbit.Networks[NETINDEX].Dynamic.Enabled = true;

Console.WriteLine("DynamicState before prepare: " +
Orbit.Networks[NETINDEX].Dynamic.DynamicState.ToString());

Orbit.Networks [NETINDEX].Dynamic.Prepare () ;

Console.WriteLine("DynamicState after prepare: " +
Orbit.Networks[NETINDEX].Dynamic.DynamicState.ToString());

The server command, Orbit.StartAllDynamic(), starts dynamic mode for all enabled
and prepared OrbitNetworks. Upon starting the collection, an OrbitNetwork shall set
its DynamicState to Running.

When a dynamic collection is running, Orbit.StopAllDynamic() is available to stop all
the dynamic collections in progress (i.e. any OrbitNetwork with a DynamicState of
Running). This call is needed to stop a dynamic collection that has been configured
with the Dynamic.CollectionSize set to '0": unlimited syncs.

When a collection ends, the DynamicState is set to Complete and collected data is
made available.

502989 - Orbit3 Software manual Issue 14 Page 48 of 94

C# (.NET)
// Configure Dynamic
// Enable Dynamic
// Prepare Dynamic
Orbit.StartAllDynamic () ;
// Give dynamic a chance to read
System.Threading.Thread.Sleep(1000);
Orbit.StopAllDynamic () ;
// Print number of readings
Console.WriteLine(Orbit.Networks[NETINDEX].Dynamic.DynamicData.ReadingCount.ToString());

If CollectionSize has been configured to a non-zero positive number, then the
collection will complete once the correct number of syncs has been reached or if
StopAllIDynamic() is called. In the case of the CollectionSize being reached, the
collection shall stop, the DynamicState set to Complete and an Event kicked off to
signal that the collection is complete.

(@ NET

private void StartDynamic ()

{
Orbit.DynamicComplete += new d DynamicComplete (Orbit DynamicComplete) ;
Orbit.Networks [NETINDEX].Dynamic.CollectionSize = 100000;
// Configure Dynamic
// Enable Dynamic
// Prepare Dynamic
Orbit.StartAllDynamic () ;

}

private void Orbit DynamicComplete ()

{
Console.WriteLine ("Dynamic collection complete.");

}

C++ (COM)
int NumberOfModules;
int NumberOfReadings = 100;
eDynamicRate ReadRate = eDynamicRate Dynamic2Custom;
double ReadingInUOM;
OrbitNet0 = Orbit->Networks->get Item(0);
OrbitDynamicPtr NetworkDynamic = OrbitNetO->Dynamic;
OrbitModulesPtr OrbitModulesO0 = OrbitNet0O->Modules;
OrbitNet0->NetSpeed = eNetSpeed UltraHigh;
NumberOfModules = OrbitModulesO->Count;
NetworkDynamic->Enabled = false;
NetworkDynamic->NumberOfModules = NumberOfModules;
NetworkDynamic->DynamicRate = ReadRate;
NetworkDynamic->CollectionSize = NumberOfReadings;
NetworkDynamic->Enabled = true;

cout << "Dynamic State: " << NetworkDynamic->DynamicState;

NetworkDynamic->Prepare () ;

cout << "Dynamic State: " << NetworkDynamic->DynamicState;

Orbit->StartAllDynamic () ;

cout << "Dynamic State: " << NetworkDynamic->DynamicState;

while (Orbit->DynamicInProgress == true) {Sleep(10);}

cout << "Dynamic State: " << NetworkDynamic->DynamicState;

AnsiString ErrorStatus = AnsiString(Orbit->GetErrorString(
NetworkDynamic->DynamicData->CollectionStatus));

cout <<"Collection Error status: " << ErrorStatus.c_str();

int NumberOfReads = NetworkDynamic->DynamicData->ReadingCount;

//Print the Results
AnsiString RowString;
for (int LoopReads =0; LoopReads < NumberOfReads; LoopReads++)
{
RowString=AnsiString () .sprintf ("\t%$i\t\t", LoopReads) ;
for (int LoopModules = 0; LoopModules < NumberOfModules; LoopModules++)

{
ReadingInUOM = NetworkDynamic->DynamicData->get Item(LoopModules, LoopReads) ;
RowString += AnsiString() .sprintf("%+9.5f\t",ReadingInUOM) ;

}

cout <<RowString.c str();
}

NetworkDynamic->Enabled = false;

To check a collection's error state see the Dynamic.DynamicData.CollectionStatus
property.

502989 - Orbit3 Software manual Issue 14 Page 49 of 94

If a collection completes without errors, the collected data is made available. This data
is stored under Dynamic.DynamicData[Modulelndex, Readinglndex] for readings in
units of measure and Dynamic.DynamicData.GetReadingInCounts(Modulelndex,
Reandinglndex) for counts.

C# (.NET)
// Configure Dynamic
// Enable Dynamic
// Prepare Dynamic
// Start Dynamic Collection
// Stop/Finish Collection
int ReadCount = Orbit.Networks [NETINDEX] .Dynamic.DynamicData.ReadingCount;
int ModuleCount = Orbit.Networks|[NETINDEX] .Dynamic.DynamicData.ModuleCount;
OrbitDynamicData DynData = Orbit.Networks[NETINDEX] .Dynamic.DynamicData;
for (int readBlockIndex = 0; readBlockIndex < ReadCount; readBlockIndex++)
{
Console.WriteLine ("\t" + readBlockIndex + "\t");
for (int moduleIndex = 0; moduleIndex < ModuleCount; moduleIndex++)
{
Console.Write(string.Format ("{0:0.000000}", DynData[moduleIndex,
readBlockIndex])
+ "\t\t");
}

Console.Write ("\n");

10.6.2.1 Dynamic External Master Mode

Dynamic mode can also be configured to have an external master (by default syncs
are triggered by the timing rates from the Orbit Controller), but when an
OrbitNetwork's Dynamic.DynamicMode is set from eDynamicMode.Normal to External,
triggering of syncs is handled by the Dynamic.MasterAddress, usually in the form of an
encoder input module. The MasterAddress is set by OrbitModule index, and should
therefore be the last addressed OrbitModule in the dynamic collection.

There are a number of modes that can be set for the MasterAddress that determine
the device's behaviour.

OrbitModuleEIM.TxSync defines the number of counts the MasterAddress must read
until the MasterAddress triggers a sync; all OrbitModules included within the Dynamic
collection shall then record a reading. Results are accessed using the same method
as eDynamicMode.Normal.

See Dynamic External Master Mode

C# (.NET)

// Configure Dynamic

Orbit.Networks [NETINDEX] .Dynamic.MasterAddress = EimIndex;

((OrbitModuleEIM)Orbit.Networks [NETINDEX] .Modules [Orbit.Networks
[NETINDEX] .Dynamic.MasterAddress]) .DynamicMasterMode =
eEncoderDynamicMasterMode.HoldOff;

((OrbitModuleEIM)Orbit.Networks [NETINDEX] .Modules [Orbit.Networks
[NETINDEX] .Dynamic.MasterAddress]) .TxSync = (Intl16)100;

((OrbitModuleEIM)Orbit.Networks [NETINDEX] .Modules [Orbit.Networks
[NETINDEX] .Dynamic.MasterAddress]) .HoldOff = (Intl6)500;

// Configure Dynamic

// Enable Dynamic

// Prepare Dynamic

// Start Dynamic Collection

// **Turn the EIM to trigger reads**

// Stop/Finish Collection

// Process Results

502989 - Orbit3 Software manual Issue 14 Page 50 of 94

10.6.3 Buffered Mode

See Buffered Mode section for more details about this mode.
Buffered mode allows OrbitModules to be individually enabled in any order by
modifying OrbitModule.Buffered.Enable to true.

Once the OrbitNetwork is configured, Buffered mode enabled OrbitModules can be
started at the same time with the OrbitNetwork.Buffered.Start() command. The
enabled OrbitModules shall then start to take readings at their set intervals (see
ModuleBufferedBase.OTUs in the Orbit Library Code Reference, and buffer them
locally on the actual Orbit 3 Module hardware (up to 3000 readings on each Orbit 3
Module).

When Buffered.Stop() is called, each OrbitModule shall stop buffering reads. These
readings are then automatically read back by the Orbit /library and can then be
retrieved using the OrbitNetwork.Buffered.BufferedData object reference.

Buffered mode has two sub-modes of operation - readings triggered by time intervals;
SyncMode, and readings triggered by an external source; SampleMode.

In sync mode the out interval, Buffered.Readinglnterval, can be configured. Each
OrbitModule will then begin to fill a local buffer at the locally set Readinglinterval.
Sample mode syncs are triggered from the controller, thus OrbitModules in sample
mode will take syncs at the same time.

C# (.NET
int moduleOne

int moduleTwo

1;
2.

Networks [NETINDEX

Orbit.] .Modules [moduleOne] .Buffered.Mode = eBufferedMode.Sync;
Orbit.Networks [NETINDEX] .Modules [moduleTwo] .Buffered.Mode = eBufferedMode.Sample;
Orbit.Networks [NETINDEX] .Modules [moduleOne] .Enable = true;
Orbit.Networks [NETINDEX] .Modules [moduleTwo] .Enable = true;

Orbit.
Orbit.
Orbit.

Networks [NETINDEX]
Networks [NETINDEX]
Networks [NETINDEX]

.Buffered.Start () ;
.Buffered.Sample () ;
.Buffered. Sample () ;

System.Threading.Thread.Sleep (100) ;
Orbit.Networks [NETINDEX] .Buffered.Sample () ;
System.Threading.Thread.Sleep (200) ;
Orbit.Networks [NETINDEX] .Buffered.Sample () ;
System.Threading.Thread.Sleep (700) ;
Orbit.Networks [NETINDEX] .Buffered.Sample () ;
Orbit.Networks [NETINDEX] .Buffered.Stop();
Console.WriteLine ("Module One Results:");

for

{

}

(int index = 0;
Orbit.Networks [NETINDEX] .Modules[moduleOne] .Buffered.BufferedData.Length;

index <

Console.WriteLine ("\t" + index + "\t" +
Orbit.Networks [NETINDEX] .Modules [moduleOne] .Buffered.BufferedData[index]) ;

Console.WriteLine ("\nModule Two Results:");

for

{

502989 - Orbit3 Software manual

(int index = 0; index <
Orbit.Networks [NETINDEX] .Modules [moduleTwo] .Buffered.BufferedData.Length;

Console.WriteLine ("\t" + index + "\t" +
Orbit.Networks [NETINDEX] .Modules [moduleTwo] .Buffered.BufferedData[index]) ;

Issue 14

index++)

index++)

Page 51 of 94

file:///Z:/Engineering/GDavis/Pending_stuff/EDCR22559%20o3spw/502989/source/502989%20-%20Orbit3%20Software%20manual.odt#4.2.2.Orbit%20Library%20Code%20reference%7Coutline

C++ (COM)
OrbitNetworkPtr OrbNet = Orbit->Networks->get Item(NETINDEX) ;
OrbitModulesPtr OrbModules = OrbNet->Modules;
OrbitModulePtr ModuleO = OrbModules->get Item(0);
OrbitModulePtr Modulel = OrbModules->get Item(1l);
ModuleO->Buffered->Mode = eBufferedMode.Sync;
Modulel->Buffered->Mode = eBufferedMode.Sample;
ModuleO->Enable = true;
Modulel->Enable = true;
OrbNet ->Buffered->Start();
OrbNet->Buffered->Sample () ;
OrbNet->Buffered->Sample () ;
Sleep(100);
OrbNet->Buffered->Sample () ;
Sleep (200) ;
OrbNet->Buffered->Sample () ;
Sleep (700) ;
OrbNet->Buffered->Sample () ;
OrbNet->Buffered->Stop () ;
cout <<"Module One Results:" <<endl;
int NumReads = ModuleO->Buffered->BufferedData->Length;
for (int index = 0; index < NumReads; index++)
{
cout <<"\t" << index << "\t" +
ModuleO->Buffered->BufferedData->get Item(index) <<endl;
}
cout <<endl << "Module Two Results:";
NumReads = Modulel->Buffered->BufferedData->Length;
for (int index = 0; index < NumReads; index++)
{
cout <<"\t" << index << "\t" +
Modulel->Buffered->BufferedData->get Item(index) <<endl;

By default, the controller within an OrbitNetwork is deemed the master: responsible for
sending sample commands. Buffered mode can be configured with an external
master; usually in the form of an encoder input module. The MasterAddress is set by
its OrbitModule index; setting to -7 configures the controller as the master. The
number of counts before triggering a sample command can be set with
ModuleEIM.TxSample. This property works in a similar way to ModuleEIM.TxSync
(used for dynamic mode).

C# (.NET)
// Configure and enable OrbitModules. Should be in Sample mode.
// Shall read every 100 EIM counts once Buffered started.
((OrbitModuleEIM)MyNetwork.Modules [EimIndex]) .TxSample = 100;
MyNetwork.Buffered.MasterAddress = EimIndex;
// Start Buffered mode
// Rotate EIM
// Stop Buffered mode
// Get results

C++ (COM)
// Configure and enable OrbitModules. Should be in Sample mode.
OrbitNetworkPtr OrbNet = Orbit->Networks->get Item(NETINDEX) ;
OrbitModulesPtr OrbModules = OrbNet->Modules;
OrbitModuleEIMPtr ModuleEIM = (OrbitModuleEIMPtr)OrbModules->get Item(EimIndex) ;
// Shall read every 100 EIM counts once Buffered started.
ModuleEIM->TxSample = 100;
OrbNet->Buffered->MasterAddress = EimIndex;
// Start Buffered mode
// Rotate EIM
// Stop Buffered mode
// Get results

502989 - Orbit3 Software manual Issue 14 Page 52 of 94

10.6.4 Difference Mode

If DifferenceModeCapable, an OrbitModule may be enabled into Difference mode by
setting Orbit.Module.Difference.Enable to frue.

Enabled Difference mode OrbitModules can then be started into reading in Difference
mode with a call to OrbitNetwork.Difference.Start(). Results are read with
OrbitNetwork.Buffered.ReadDifference(). ReadDifference exposes the following data:

* Minimum reading in units and counts.

+ Maximum reading in units and counts.

» Difference between the max and min, in units and counts.
* The sum of all the readings taken (DP/AIM).

» The number of reads taken (DP/AIM).

* The error state.

Difference mode can then be stopped with OrbitNetwork.Difference.Stop(). A detailed
example can be found in the Orbit Library Test example in DiffModeUC.cs.

10.6.5 RefMark Mode

Provided for the Linear Encoder range, RefMark mode provides functionality for
setting a datum from the linear encoder's reference mark; this datum is lost when the
Module powers down, thus must be resettable upon powering up.

The Orbit Library Test example project includes an example implementation of
reference mark mode in RefMarkUC.cs.

502989 - Orbit3 Software manual Issue 14 Page 53 of 94

11 ORBIT LIBRARY TEST

11.1 INTRODUCTION

The Orbit Library Test program has been developed as a functional example to help
ease users into working with the Orbit Library. Included is clearly commented source
code written to provide reference, as well as simple, clean examples of interfacing to
an Orbit3 Measurement System. The Library Test also operates as a suitable tool for
analysing and setting up an Orbit3 system.

The Library Test is designed in a modular manner allowing users to quickly pull code
straight from the Library Test and integrate into existing user developed applications.

This document provides an overview of the Library Test’s features and usage, an
examination of the structure of the source code and a partial walk-through of
recommended development tools.

11.2 FEATURES
The Library Test features the following functionality:

e Orbit Server Interfacing
e Connecting
® Disconnecting
® Accessing Networks
® \/ersion Information

e Orbit Network Interfacing
® Network Information
e Network Capabilities Listing
® Accessing Modules
® Network Management
Add Module
Notify Add
Find Hot swapped
Ping
Remove Module
Clear Modules
Clear TCONs
Saving and Loading XML Network Configurations
Network Speed Configuration
Laser Beam Control

502989 - Orbit3 Software manual Issue 14 Page 54 of 94

e Orbit Module Interfacing
® Module Information
® Module Capabilities Listing
® Traditional Reading
¢ Units of Measure
e Counts
® Module Type Specific Configuration
DP
LT
LTH
AIM
DIM
DIOM
EIM
LE
Confocal
Get Modules Status
Reset Module Status

e Reading Mode Configuration

® Read Burst Mode

® Dynamic Mode
¢ Dynamic External Master
e Dynamic 2
Difference Mode
Reference Mark Mode
Buffered Mode
o Buffered External Master

502989 - Orbit3 Software manual Issue 14 Page 55 of 94

11.3 USER GUIDE

The following guide defines the different areas of the application and explains their
usage.

11.3.1 Getting Started

If the Orbit3 Support Pack for Windows is not yet installed, please see the relevant
section in the Orbit3 System manual. Once installed, the Library Test's compiled
binaries and source code can be found under then OrbitLibraryTest\ folder in the
Orbit3 Support Pack for Windows installation directory: i.e.

C:\Program Files\Solartron Metrology\Orbit3 Support Pack for Windows

Ensure there are no other applications running which are connected to Orbit and run
OrbitLibraryTest.exe to start the application.

502989 - Orbit3 Software manual Issue 14 Page 56 of 94

11.3.2 Usage

The screen shots displayed below illustrate and explain the different areas and functions of
user interface elements.

11.3.2.1Server Tab

&) Orbit Library Test = | B |
File Help
Server
|[Connect] [Connect including WIMs] Disconnect | | Orbit net version: 1.02.3 Part Number: EIIERE] H
Available Networks N
|Connection Controls | | Version Information
Orbit Server Tab

Allows for the connecting
and disconnecting from
Orbit, and access the
different networks.

Activity Status Connection Status |
N

/ %o{ Networks:

Ready. Disconnected.
| | |

The 'Connect including WIMs' is designed to accommodate the long connect times
associated with Bluetooth devices (up to 35 seconds).
If no WIMs are required, use the traditional method.

The status bar will be updated when the Library Test is performing a task.

Connecting to Orbit. Please Wait. Disconnected. |

502989 - Orbit3 Software manual Issue 14 Page 57 of 94

Once connected to Orbit:

r“, Orbit Library Test

0
[m]

Fle Help With a network selected, the
'Network tab' can be
Server | Network COMT2 (74DBROS) | accessed.

Connect ’ Connect including Wils ” Disconnect]
Available Networks

COrbit.net version: 1.0.2.3 Part Number: i{EaE]

| COM12 (174DB43R06)

_,,..-""'"f

Once connected to Orbit, the
network list will display all the
available networks.

11.3.2.2Network Tab

r" Orbit Library Test

[E=SEER)

File Help

Server | Network (USBIM2 (427ZC51R01)} || Module (111ZB45P01) | Buffered Mode | Difference Made [

Once a module is selected, additional tabs
are made visible depending on the combined

Network Information

Description
Interface Speed -None

Metwork Type
MNetwork XML File

USEIM_Mk2

Current Capabilities

USBIM2 (427ZC51R01)

Networe Modes
Buffered:
Buffered Extemal Source:
Dynamic:
[ynamic BEdemal Source:
[ymamic2:
Read Burst:

Load Netwark | | Save Netwark

Network Speeds
Low

High
UktraHigh

True
True
False
True
False
False

True
True
False

MNetwork Speed
Current:

High
Available:

Low

High

capabilities of the selected network and

modules.

IModules
Available
111ZB45P01
100GC45P 14
100GC45P25
100GC45P20
100GC45P03
100GC45P24
100GC45P 10
100GC45P 12
106ZB45P 15

Displays the selected network’s information,
also allowing:

- Loading and saving the current network
configuration.

- Listing the network’s current capabilities.

- Setting the network's speed.

FindHot Swapped

Will change the addressed
position on the bus of
selected module.

NotifyAddModule

Stop Maotify

132ZB45F14

Add Module

106ZB45P21
100GC45P 16
100GC45P07
221AB43DMN
100GC45P17
100GC4A5P 06
100GC45P27
100GC45P05

Available modules are listed, allowing
a module to be selected.

This will update the contents of the
'Module tab' with the selected
module's information.

100GC45P26
100GC45P 15
100GC45P 04
100GC45P 30
100GC45P21
100GC45P13
100GC45P02
056AB48501

100GC45P23
100GC45P 01
100GC45P22
100GC43P11
D6BAC45502
100GC45P 25
100GC45P28
100GC45P 18
100GC4A5P 05
100GC45P 15
100GC45P08

Delete Module:

Clear Modules

Clear TCons

Allows administration of
the selected network's
modules.

Number of Modules: B7

Ready.

Connected.

502989 - Orbit3 Software manual Issue 14

Page 58 of 94

11.3.2.3Module Tab

The following displays the module tab with only the generic controls visible.

8

‘v’ Orbit Library Test

E=E)

File Help
| Server | Networlc (USBIMZ (427ZC51R01)) | Moduls (106ZB45P13} | Buffered Mode | Read Burst Mode | Difference Mode |
Madule Information Capabilties Module Status
Idertity S Status (Hed)
Cyniamic:
Module Type [Cynamic2: Ermmor Code {Hex)
Difference:
; Ref Mark:
Device Type P Emor Code Text
Software Version MOEOU.‘L? Speeds Get Status
High
Range UltraHigh
Misc
Unitz Of Measure Hot Swapable:
Probe Identity
Readng \
Reading | Fead
)) Displays the selected module's information, also
Reading Decimal Places : 5
allowing:
Read'”) Stop Continuous - Listing the module's capabilities.
@) Units' @ Courts - Retrieving the modules status; this also resets
w5 Iy e Hod [Timo Roadings | the status.
New Reading Available
Displays and provides the reading functionality.
Readings can be read singularly or continuously,
they can also be timed. Timing will take readings
as fast as possible over a5 second period and
display the average number of module readings
per second.
Readings can be taken either as a unit of measure
or as a number of counts.
Feady. Connected.

Issue 14

502989 - Orbit3 Software manual Page 59 of 94

Differing module types have specialist configuration options. These options are only
visible when a module of the correct type is selected.

11.3.2.3.1 Resolution and Averaging Configuration

Resolution Averaging
Curmrent: Current:
14Bit 16
Awvailable: Awvailable:
14Bit 1
16Eit 2 .
18Eit 4 Only available for DPs, AlIMs and LT/LTH laser
1§ products; allows configuration of a
13 module's resolution and averaging.
64
128
256
Set Default || Set | | Set Default | Set |
11.3.2.3.2 Pre-set Configuration
Preset
0 Available for the DIOM, EIM and LE;
allows the configuration of the preset
Emuis value. This can be set in either units or
counts.
11.3.2.3.3 EIM Configuration
Encoder Input Module (EIM)
Ref Action Quadrature Mode Encoder
Current Currert Currert
MNone quadXi Differential
Awailable Awvailable Awvailable
ContinuousReset quadx2 SingleEnded
ContinuousPreset guadx4
Eﬂi'ft Eﬂumgﬁq Only available for the EIM, allows the
= o configuration of a module's Ref
Action, Quadrature and Encoder
modes.

502989 - Orbit3 Software manual Issue 14 Page 60 of 94

11.3.2.3.4 DIM Configuration

ReadOnw'rtch i
ReadOnSample

Digi Matic {DIM}
Read Mode
Cument Update Reading Info
ReadContinuous
Available Sample Reading |

[ReadContinuous |

Only availalble for DIMs; allows
— the configuration of a
module's read mode.

ED
11.3.2.3.5 LE Configuration
Direction
@ Mormal Only available for LE; configures the
® Reversed direction (clockwiselanti-clockwise) the LE
[m will count in.
11.3.2.3.6 LT Configuration
Only available for the LT:
LT Laser Cortrols provides the Laser Beam
Lazer Beam On On/Off control.
11.3.2.3.7 LTH Configuration
Lager LTH
Model LTS050-10
Low Pass Fiter Level Cut Time Only available for the LTH:
Cument 0.1m5 steps,ie. ImS==10 configures the Low Pass
FiterdicHz Curment Filter rate for the laser and
Available 0 also allows adjustment of the
Fitter20kHz » | Avaiable Level Cut Time, as well as
= (D = Laser Beam On/Off control.
Filter Tk Hz i|
EEEEEEEE i Laser Beam On

502989 - Orbit3 Software manual

Issue 14

Page 61 of 94

11.3.2.3.8 Confocal Configuration

Only available for confocal.

Configures the Integration,
] Bright, Averaging and Read

Confocal

Integration Channel B is onby
available in

10 v thickness and AB

Bright Modes

Bright _1 ~ | Set | | Read Channel B

Averaging Reading

Read Mode

HighPrecision -

Mode settings. Displays
Channel B reading. Channel
A reading is returned via the

main Reading panel.

11.3.2.4Read Burst Mode Tab

Only displayed when a Read Burst capable module and network is selected.

&) Orbit Library Test =R

File Help |

| Server | Network (USBIM2 (4272C51R01)) | Module (106ZB45P 1) - - = ET—T— -

Network Commands The number of 'Contiguous Capable Modules' denotes the number of

% modules which are capable of Read Burst mode and are contiguously
Cortiguous Capable Modules ’I" | addressed from the address 0 until the last address or first module not
Total Capable Modules 34 capable of Read Burst mode.
m "Total Capable Modules’ displays the total number of modules Read
Read in Counts Read in Units Burst capable on the selected network.

Besult:

E——— o Time Readings takes readings over a5 second period and displays the
| a
=g e = average number of module readings er second.

b 1067845P19 NULIE] NoEmor m
1327B45P14 4619 NoBmor Read Burst eading can be taken in either unit or counts. The results
106ZB45P21 11356| NoEmor are displayed in the grid below.
100GCA3P 16 8602| NoEmor
100GC43P25 6317| NoEmor
100GCA3P07 1338 NoEmor
100GCA3P17 4771| NoEmor

Ready. Connected.

502989 - Orbit3 Software manual

Issue 14 Page 62 of 94

11.3.2.5Dynamic Mode Tab
Only displayed when a Dynamic or a Dynamic 2 capable module and network
configuration is selected.

(€9 orbit Library Test = [B [|
File Help
| Server | Netwark (USBIM2 (427ZC51R01)) | Module (111Z845P01) | Buffered Mode | Difference Mode | Dynamic Mode |
Metwork Commands Dynamic Mode Motes
Rate
RatedK For rates other than DynamicZCustom:
— - network must be in high speed mode
Rate2k - Number of modules are limited;
Rate1K 4k 8 modules
DynamicZCustom 2k 16 modules
Interval ; 1k 31 modules
Fumber of Syncs Dynamic 2 will operate at any speed and modules are limited to that of
- 18 the network's maximum limit. An interval in microseconds must also be
Tyrc Mode set for Dynamic 2.
@ Momal) Extemal
'Number of Syncs' when set to '0" will put Dynamic mode into
continuous reading mode, only stopping when stop button is clicked.
Otherwise, Dynamic will stop once the number of syncs have been
reached.
H;ngﬁ Dynamic can also be configured with a dynamic master which will
E:ffag?on_geizft trigger syncs. An EIM can be set as a master along with configuring its
,.,jmaa';[;— = Dynamic Master Mode, Counts per Sync and if in HoldOff mode, the
- number of counts to hold off before starting thecolection.
Todalelist
Modules In Collection |2 5
TR T A Dynamic mode collection needs to have at least one module, the
100GC49F 14 number of modules could also be limited by the Dynamic rate set.
100GC49P25
100GC49P20
100GC49P02
Display Enzbled Fal
Readings shied =S Configuration settings will be validated and applied when enabling and
Module Status jnactive | preparing the network. A network’'s enabled status is displayed here as
Al Disabla well as the state of the network.
Prepare
Crbit Server Commands A collection can be started once one network is enabled and prepared.
e Stop |/ A collection can be stopped at anytime by clicking the 'Stop’ button.
Ready Connected.

502989 - Orbit3 Software manual Issue 14 Page 63 of 94

11.3.2.6 Difference Mode Tab
Only displayed when a Difference mode capable module is selected.

g B
&) Orit Library Test =] B)
File Help
[Server | Network (USBIM2 (4272C51R01)) | Moduls (4D0AB38L0T) | Read Burst Mods | Ref Mark Mode | Difersnce Mode |

Module Commands Difference Mode MNotes

Module 400AS38LO1 Enabled True

Read Difference

v i Displays the ID of the selected module and the Diff

_—— iz isp a:ys e .° e selected module an e Difference

— e mode 'enabled’ status.

Mirirmum -313050 Minimum -15.6545

Sum of n/a Sum of na

Difference 313135 Difference 15.65695

HReads n/a Emor Msg Mo Emor

Enable Digable
The results of Difference mode are displayed in both units
and counts. These are continuously updated once a
module on the network has been enabled, and 'Start Diff’
has been clicked. More than one module can be enabled,
and starting or stopping Difference mode will affect all
enabled modules on the network
Metwork Commands
Lisplesy: Hendings Modules Enabled 1
Al Modules Stop Dif
Reference Mark Found Connected.
N

502989 - Orbit3 Software manual Issue 14 Page 64 of 94

11.3.2.7Buffered Mode Tab
Only displayed when a Buffered mode capable module is selected.

&) orbit Library Test = | (B
File Help
| Server | Netwerk (USBIMZ (427ZC51R01)) | Module {111ZB45P01) | Buffered Mode | Difference Mode | Dynamic Mode
_Module Commands Buffered Mode Motes
Module 111ZB45P01 Enabled False
Submode: Mone n
g Displays the ID of the selected module, the Buffered mode
el ‘enabled’ status and the configured sub-mode.
@ Sync Mode
() Sample Mode .
Sync Mods Settings Allows the configuration of:
Interval us) : angs [-Buffered sub-njode; s:_ample or sync mode.
- The configuration setting for sync mode, when selected.
Interval Eror {us) 1]
Orbit Timing Units 40 Clicking enable will attempt to set the configured settings and
the enable Buffered mode. An error message will be
[Enable || Disable |/ displayed if incorrectly configured.

If sample mode is configured for any of the modules on the
network, an external master can be configured in order to
generate sample triggers; i.e an EIM. Counts per sample
define the number of counts between each triggered sample.

Network Commands

Modules Enabled O When at least one module has Buffered mode enabled, the

ST T— network can start a buffered collection. If the network has no
external master set and a least one module with sample mode

Master Address - Conrtroller , 0 q
enabled, the 'Sample Buffered’ button can be used to trigger

Counts per Sample |- 0 samples for all sample mode modules. Otherwise modules in

Display Results sync mode have their readings taken at their own configure
intervals.

Al Modules Sample Buffered
Cumrent Module Start Buffered Stop Buffered
Ready. Connected.

502989 - Orbit3 Software manual Issue 14 Page 65 of 94

11.3.2.8 Ref Mark Mode Tab

Only displayed when a Ref Mark mode capable module is selected.

rﬁ) Orbit Library Test

File Help

| Server | Network (USBIM2 (427ZC51R01)) | Module (4004838L01) | Read Burst Mode | Ref Mark Mode | Difference Mode |

Reference Mark Mode

Module 400A838L01
Ref Mark Reading -83659
Recall Value 89699

Mode Read In
@ Leam @ Courts
) Recall) Units

Find RefMark Stop Searching

Reference Mark Notes

Displays the current module's ID, Ref Mark mode will
selected module.

only affect the

Ref Mark mode starts in Learn mode. Finding the ref mark in learn mode
will place the offset location of the ref mark from 0 in the 'Ref Mark
Reading’ box. It's suggested that this be stored for future use.

set to the value got from a previously learnt ref mark.

When set to recall mode, the 'Recall Value® can be edited. This should be

Once the ref mark has been found in Recall mode, the LE will be preset as
it was when the learn mode ref mark was found. l.e. the location of 0 on
the stroke will be same as when the learn mode ref mark was found.

Reference Mark Found

Connected.

502989 - Orbit3 Software manual

Issue 14

Page 66 of 94

11.3.2.9Results Window

) orbit Library Test o=@ = |
For each mode tab in the Orbit Library Test, there are 'Display Results” buttons. These
become enabled once the Orbit.NET Library has data to display, i.e. after a dynamic collection.

Dynamic Mode Notes
| —
[Resutr— [Module Name |
- 111ZB45F01 100GC43P 14 100GC43P25 100GC43P20 100GC4SP03
i st
Dynamic2Custom » 0 0.220337 077124 0.419312 0.62854
ienEl 1 UnderRange 0.220337 0.77124 0.419312 0.62854
2 UnderRange 0.220337 077124 0413312 062854
Number of Syncs 3 UnderRange 0.220337 077124 0418312 0.62854
4 UnderRange 0.220237 077124 0413312 062854
5 UnderRange 0.220337 077124 0413312 062854
= 5 UnderRange 0.220337 077124 0413312 062854
BExternal Master
| 7 UnderRange 0.220237 077124 0413312 062854
] 3 UnderRange 0.220337 077124 0419312 062854
Dynamic Master MediP= g UnderRange 0.220337 0.77124 0419312 0.62854
] = 1w UnderRange 0.220337 077124 0413312 062854
'Hnsltggﬁ E? 11 UnderRange 0.220337 0.77124 0.419312 0.62854
O
Refaction_Reset = | 12 UnderRange 0.220237 077124 0413312 062854
pefadton_Freset - 1 8| 13 UnderRange 0.220337 077124 0419312 0.62854
N 4 UnderRange 0.220337 077124 0413312 062854
Counts per Syne [15 UnderRange 0.220337 077124 0419312 0.62854
Fleld O Courts [16 UnderRange 0.220337 077124 0413312 062854
ModuleList 17 UnderRange 0.220237 077124 0413312 062854
Modules In Collection [18 UnderRange 0.220337 077124 0418312 0.62854
TTIIEIIT 19 UnderRange 0.220337 077124 0413312 062854
100GC43F14 20 UnderRange 0.220337 077124 0413312 062854
] g%gigﬁﬁg 2 UnderRange 0.220337 077124 0419312 062854
100GC43P03 2 UnderRange 0.220337 077124 0413312 062854
23 UnderRange 0.220337 077124 0413312 062854
24 UnderRange 0.220337 077124 0413312 062854
E . 25 UnderRange 0.220237 077124 0418212 062854
| Mode |
[| [e T Deabe]
| Prepare |
Orbit Server Commands
Start | | Stop |
Displaying results; this may take some time-... Connected.

502989 - Orbit3 Software manual Issue 14 Page 67 of 94

11.4 SOURCE CODE

This section contains the technical details of the Library Test. This will include a partial
walk through of the source code and steps towards familiarisation and navigation.

11.4.1 Development Tools

The Library Test is written in C# for the Microsoft .NET 3.5 Framework and has been
tested on 32bit and 64bit variants of XP, Vista and Windows 7. The application was
written in Microsoft Visual Studio #C Express 2008/2010.

11.4.1.1Microsoft Visual Studio C# Express

It is recommended that C# Express is used for browsing and modification of the
source code provided; although, there is nothing restricting the use of another
compiler or IDE.

A free, licensed version of Visual Studio 2010 C# Express is available from the
Microsoft website: http://www.microsoft.com/express/Windows/

For further details and feature lists for C# Express, see the Microsoft website.

11.4.2 Opening the Project File

To open the Library Test 'solution file' in visual studio; run visual studio, go to File >
Open Solution and navigate to the Library Test directory and open
'‘OrbitLibraryTest.sIn'.

r y
Ig Start Page - Microsoft Visual C# 2010 Express (Administrator) o S
Edit View Debug Tools Window Help

3] Mew Project... CrlShiftsN b | (4 | - [Sl =R S0 Bl -
| _:‘_'| Open Project... Ctrl+Shift+0 | s
- X| €l
& OpenFile... Ctrl+0 -
‘=l
Close
Close Selution <
Save Selected ltems Ctrl+5 r
Save Selected Items As... |
@ Saveal CtilShiftss | Get Started =~ Latest News
Bpmtlenuls Welcome Learn Upgrade
Page Setup...
Print... Ctrl+P e w ;)
Ernt i | T et - Welcome to Visual C# 2010 Express
Exit Alt+F4 The tradition continues! Visual C# 2010
2 Express helps developers quickly create
exciting interactive applications for Windows.
B With the new Visual C2 2010 Express
development environment, improved
performance, and lots of new features,
maoving from great idea to great application
has never been easier. Kick off your learning
at the Beginner Developer Learning Center, or
find the latest and coolest projects on
Coding4Fun.
Beginner Developer Learning Center
Coding4Fun
Mare on Visual C# 2010 Express
[¥] Close page after project load i | Quickly Create Your First Application
[#] Show page on startup i

502989 - Orbit3 Software manual Issue 14 Page 68 of 94

http://www.microsoft.com/express/Windows/

@ Start Page - Microsoft Visual C2 2010 Express (Administrator) | o | B P J
File Edit View Debug Tools Window Help
e R I N e S e R i

Enter Orbit Support Pack diectory path |- 5] & -

P78 Start Page X project files |-ion Explorer
3 - -

8 @(3-| |« Orbit + OrbitlibranTest »

g Sl—— e

OO Vistal C¥

Organize = Mew folder -
z
@ Microsoft Visual C# MName Date modified Type
L CVS Select OrbitLibraryTest.sIn
@ New Project... 0 Favorites) OrbitLibraryTest TTUZTZ0IT U T T TOTOreT

@_’ Open Project... [OrbitLibraryTest 21/02/2011 10:30 Microsoft Visu
B Desktop > OrbitlibraryTest 21/02/2011 10:31 Visual Studio 5§

Recent Projects

| Once selected, click open.

4 m | +

File name: OrbitLibraryTest > [A” Fileg (*.%) 'l

Close page after project load
[¥] Show page on startup \

Note; Visual Studio may try and convert the project file depending on the version of
Visual Studio the project was created with to the current version being used.
Follow the conversion wizard's instructions and the project should open correctly.

@ Start Page - Microseft Visual C# 2010 Express [Administrator) |_‘:' 8 = |
File Edit View Debug Tools Window Help
eI - —

| Visual Studio Cony : [

Start Page L —EEE——————— e T >R x

Welcome to the Visual Studio

Microsoft 4 o
w\/|5ua| (\ Conversion Wizard

The selution or project you are opening must be converted, [twas either
created in a previous version of Visual Studio, or it relies on an clder version of
1 a program that you have installed on your computer, After a solution or any of
@ New Project... 74 its projects has been converted, it may no longer be possible te edit, build, or

= : run in previeus versions,
@ Open Project... 3

G

X0q[oo] X

If the selution or project is under scurce contrel, it will be checked out
autematically during the conversion. Be sure the correct Source Centrel Plug-

Recent P I’OjE'CtS | P\Q in is active, and no files are exclusively checked out by other users,
Y
E g |

If the scluticn or project is not under scurce confrol, please ensure that all files
have read/write permissicns.

Click Mext to proceed.

Net> || Fiish ||| cance

Close page after projed)
Show page on startup .

502989 - Orbit3 Software manual Issue 14 Page 69 of 94

11.4.2.1 Compiling

In its initial state, the library test needs compiling before it can be run from the source
code. This should be as simple as opening the 'solution' file in visual studio and
clicking 'Build".

[ESE =)

Right Click the Solution —‘

-
@ OrbitLibraryTest - Microsoft Visual C# 2010 Express {Adm'mistramr]l
File Edit View Project Debug Tools Window Help

DA SH@ 6 DR B

L W Y

to bring up the menu.

- R e e

Solution Explorer - X

ey

A Solution 'OrbitLibraryTest' ({ =

Build Selution 6 LibraryTest

Rebuild Solution operties
eferences

Configuration Manager... pp.manifest

Add ufferedModelC.cs
AboutBox.cs
nputBox.cs

Paste / ifferenceModeAllRe
Rename iffModelC.cs

saunog eyeq il %0q|oo] .

Set StartUp Projects...

lisplayResults.cs
own.brp

& DynamicModelC.cs
= Forml.cs

ModuleDIMUC.cs
#H ModuleEIMUC.cs

& MedulelnformationU
#H ModulelEUC.cs

#H ModulePresetUC.cs
ModuleReadingUC.c:
#H MeduleResolutionAn
#H NetworkModulesUC,
#H MetworkUC.cs

__:; OrbitLibraryTest.snk

OrbitServerUC.cs

. [# OrbitUserControl.cs ~
n 3

Alt+Enter

Iz Properties

11.4.2.2Running

The application can be run from the same menu, or can be run from Windows Explorer
from the bin/ directory in the Library Test's project directory.

L W Y

r ™
[OrbitLibraryTest - Microsoft Visual C# 2010 Express (Administrator]l (il
File Edit View Project [Debug | Date Teols Window Help

;ﬂ R = | | | # Start Debugging F5 I

Build Soluticn F&

'||‘:=«J§X*E|E“&=

Solution Explorer 1 x
= la
g Selution 'OrbitLibranyTest' (1 «

Toggle Breakpoint 9 4 | OrbitLibraryTest
Properties
References

Ep app.config

Step Into

Yl W BE

Step Over

Windows

Clear All DataTips

sanos e3eq 1l x0qj00L .

Build succeeded

Export DataTips ...
Import DataTips ...

Options and Settings...

| app.manifest
BufferedModelC.cs
cAboutBox.cs
clnputBox.cs
DifferenceModeAllRe =

g DiffModelC.cs
DisplayResults.cs
down.bmp

DynamicModellC.cs

=] Ferml.cs

ModuleDIMUC.cs

ModuleEIMUC.cs

ModulelnformationlU

ModulelEUC.cs

ModulePresetUC.cs

ModuleReadingUC.c:

ModuleResolutionAn

& MNetworkModulesUC.

MetworkUC.cs

__:; OrbitLibraryTest.snk

> [# OrbitServerUC.cs A%

m 2

502989 - Orbit3 Software manual

Issue 14

Page 70 of 94

11.4.3 Navigating the Source Code

It is recommended that the source code is in a compiled state before opening any of
the designer files (GUI files; forms user controls); in order to render certain parts, the
designer requires them to be compiled.

Project not yet Built|
MetworkUC.cs [Design] >

0 1 Error

Instances of this error (1)
1. Show Call Stack

Help with this error
MSDN Help

- [# MeoduleReadingUC.c:
- [# ModuleResolutionin

Double Click the

UserControl to open.

#| MetworkModulesUC,

5 MetworkUC.cs

R 1 T 2 B SRR, PPN P

=|

The designer could not be shown for this file because none of the classes within it can be designed. The designer inspected the
0 following classes in the file: NetworkUC --- The base class 'Solartron.Orbit3.LibraryTest.OrbitUserControl’ could not be loaded. Ensure
the assembly has been referenced and that all projects have been built.

4| I | 3

m

UserContrel can not load.

Project Builtl

[ORNENERNTINN. e

Metwork Information

Curment Capabilities

Description

:Irlterface Speed

S

Metwork Type

~ Network XML File

Load Network] [Sawe Network

Metwork Speed

Available:
eMetworkcSpeads

Set

[UserControl loads correctly. I

502989 - Orbit3 Software manual

Issue 14

Page 71 of 94

Once the Library Test is compiled and can run, the project is in a good position to be
explored. The Library Test consists of a Windows Form form control containing a menu
strip bar, a status bar and a tab container control. There is a tab for the Orbit server,
network and module, as well a tab for each mode, Read Burst, Dynamic, Buffered,
Difference and Ref Action. Each of these tabs contain user control which inherit from

OrbitUserControl.

OrbitUserControl contains common functions to many user controls, thus, inheriting
the OrbitUserControl class allows for much of the user interface code to be kept out of
the way.

r 3
@ CrbitlibraryTest - Microseft Visual C# 2010 Express (Administrator) ‘ ‘ E@éj

File Edit View Project Debug Data Format Tools Window Help
e - I R ARl 3| - 53 S Bl B

Pl & 3| T e L |0 ES R e | S & e | DS

~ Selution Explorer

/_:i Forml.cs [Design]® <

= =22 EE

Selected Tab | | MenuSltrlp Bar | == =] Solton OriLirayTest 0 -
File Help I a DrbltLlhraryTest

> [=d| Properties
Server | Network | Module | Bufersd Mode | Ref Mark Mode | Difierence Mode | Dynamic Mode | Read Burst Mode . G References

T i -
Disconnect Orbit net version Part Number — User Control f-w"flg
: T epR.manifest

Available Networes i
i > [# BufferedModelC.cs

i . [E] cAboutBox.cs
2] dnputBox.cs -
. [Z] DifferenceModeAllRe|
. [# DiffModelC.cs
>] DisplayResults.cs

@ down.bmp
. [# DynamicModelC.cs
> 2] Forml.cs
> [# ModuleDIMUC.cs
. [# ModuleEIMUC.cs
> [#] Modulelnformationl
> [#] ModulelEUC.cs
> [# ModulePresetUC.cs I
. [# ModuleReadingUC.c:
> [#] ModuleResolutionin
] . [# NetworkModulesUC,

Status bar is programmaticaly built upon loading form1. 4 j_?:I NetwarkUC.cs

¥

(=

S32UN0G B18(] |_,.

Number of Networks:

ML VR U, S

s < i +

All the orbit functionality has been split up into these controls to ease of reading. In
order to quickly navigate to an area of the Library Test, first double click form1.cs so
that the windows forms designer loads.

502989 - Orbit3 Software manual Issue 14 Page 72 of 94

Next navigate the tab container and identify the user control which contains the area of
interest. Note down the type on the control and select the UserControl type from the

solution explorer.

| Finding the code behind the Network tab's 'Find Hotswapped' button. |

1.) Load form1.cs in the designer, Server tab is
selected by default.

Server || Metwark | Module | Buffered Mode I Ref Mark Mode I Difference Mode I Cynamic Mode | Read Burst Mode

Awailable Networks

Orbit net version:

2.) Selectthe Network tab.

|Senter INEiWUI'k Module I Buffered Mode I Ref Mark Mode | Difference Mode I Dynamic Mode | Read Burst Mode

Metwork Information Metwork Speed
Cument:

Cument Capabilities

Description

Interface Speed Available:

| Server| Network | Module I Buffered Mode | Ref Mark Mode | Difference Mode I Dynamic Mode | Read Burst Mode

T TE WIOUOTELTUT T

> [# ModulePresetUC.cs

Metwork Information Cument Capabilties Metwork Speed

Curmrent:

Description
Interface Speed Awvailable:

Metwork Type
Metwork XML File

[1 [1
3.) Selectthe user control which houses the

- [# ModuleReadingUC.cs

> # ModuleResclutionAndAveragingUC.cs B
a | [# NetworkModulesUC.cs =

"’E] MetworkModulesUC. Designer.cs
g’g] MetworkModulesUC.resx

5 Find NetworkModulesUC in the solution
explorer, double click.

button. Set |networkModulesUC1 Solartror1.0rbiE.Librar)rTest.NetworkModuIv
Modules = = =
Available 4} Look in the Properties window, note down
FindHot Swapped Stop Notify the type:
Solartron.Orbit3.LibraryTest.NetworkModulesUC
[Fing | [Add Mocule
(Mame) networkModulesUC1
[NotiyAddModule | [Delete Module AccessibleDescription

Number of Modules:

AccessibleMame

AccessibleRole Default -

The user control should now be loaded into the windows forms designer. Locate the

button that interests you and double click it.

MetworkModulesUC.cs [Design]® > REalia R (1= 1)

Modules

Awvailable

|bAvailable Modules

FindHot Swapped

Ping

[«] [5]

MotifyAddMadule

Add Module

)
)
)
)
)
)

Delete Madule

[
[
[
| Stop Notify
[
[
[

Clazr Modulse]

be double clicked.

__| With NetworkModulesUC.cs loaded in the designer, 'Find HotSwapped' can

502989 - Orbit3 Software manual Issue 14

Page 73 of 94

The source for the user control should open in the C# text editor, and the text cursor
will be on the line of the button event handler. The code within the function provides
an example on how to call that particular Orbit command.

- 5
OrbitLibraryTest - Microsoft Visual C# 2010 Express (Adm'mistra_ ‘ ‘ s o5 S

File Edit View Project Debug Data Tools Window Help
A SE & B9 B -] | 5 = e Bl A -
P arIfE] S 2

[WET LML e MNetworkModulesUC.cs [Design] Forml.cs [Design] Solution Ex... * I X

“ Solartron.Orbit3. Library Test.MetworkModulesUC vl =" btnFindHotSwapped_Click{object sender, Eventérgs €]
= <summary’ ﬂ Modul =
Finds all HotSwappable modules on a network and adds them upon button press H# Medul
Modul
Modul
#H Modul—
& Modul =
DisableControls();] _Netwcl_
'] Me
ChangeStatusMessage(“Find Hot Swapped on Network. Please Wait.™, eStatusBarPanels.sbPanLeft); ' Me

3

sender”></param>
/// <param name="e"></param>
private wvoid btnFindHotSwapped_Click(ebject sender, Eventirgs e)

s22unog ejeq il ¥0q(oo) .

T Mot

try < [am]

{
}
catch (Exception ex)
{
}

UpdateModulelist();
ChangeStatusMessage("Ready."”, eStatusBarPanels.sbPanLeft);

Properties * 0 X
MyNetwork.Modules. FindHotswapped();

MessageBox.Show(ex.Message, Constants.EXCEPTION MESSAGEBOX_ CAPTION);

3

EnableControls();

ﬂ, Error List

Ready

502989 - Orbit3 Software manual Issue 14 Page 74 of 94

12 MODULE SPECIFIC OPERATION

There are many Orbit Library commands that are specific to particular Orbit Modules.
Also, newer Orbit features may not be available on some of the older Modules.
See Orbit Compatibility Roadmap - Modules for details.

12.1 DIGITAL PROBE (DP)

12.1.1 Introduction

All digital probe products are treated the same by the Orbit Library.
As well as digital gauging probes, 'Digital Probes' includes all digital Displacement,
Mini Probes, Lever probes, Block gauges, Flexures and LT & LTH laser modules.

The Digital Probe was the first available Orbit Module, therefore it is compatible with
nearly all Orbit Library members.

For probe readings, we recommend the ReadinglnUnits property. This greatly
simplifies taking scaled readings from the probe.

12.1.2 Programmable Resolution

The Modules are capable of being set to operate with the digital data output
resolutions as defined below:

Resolution Number of Bits
Resolution A 14 (Default)
Resolution B 16

Resolution C 18

Change using the Module's Resolution property.

Module's isResolutionAvailable method can be used to check whether a particular
resolution is available before attempting to set it, (Orbit1 DPs only support 14 bit
resolution).

Module's AvailableResolutions property returns an array of the module's supported
resolutions.

Note: The number of bits represent the full stroke of the module.
(e.g. for a 10mm DP set to 16 bit resolution, 2'¢ is the reading for 10mm).

A default startup value is configurable on a module by module basis with the

DefaultResolution property, This saves the default resolution to the module which
restores this new default resolution on power up.

502989 - Orbit3 Software manual Issue 14 Page 75 of 94

12.1.3 Programmable Electrical Measurement Bandwidth

This provides digital filtering of the Module readings. The update rate is reduced as the
averaging is increased.

The Measurement bandwidth of the Module is programmable by setting the Number of
Averages of the Measurement cycle as below (change using the Module's Averaging

property).

Module's isAveragingAvailable method can be used to check whether a particular
averaging is available before attempting to set it, (Orbit1 DPs do not support
averaging).

Module's AvailableAveragings property returns an array of the module's supported
averaging settings.

Measurement Number of Averages
Bandwidth of Measurement
(Hz) Cycle

450 1

420 2

320 4

200 8

100 16 (Default)

50 32

25 64

12 128

6 256

A default startup value is configurable on a module by module basis with the
DefaultAveraging property, This saves the default averaging to the module which
restores this new default averaging on power up.

12.2 ANALOGUE INPUT MODULE (AIM)

The AIM has similar functionality to the Digital Probe Module, therefore it is compatible
with nearly all Orbit Library members, including Averaging and Resolution.

For module readings, we recommend the ReadinglnUnits property. This greatly
simplifies taking scaled readings from the probe.

502989 - Orbit3 Software manual Issue 14 Page 76 of 94

12.3 LINEAR ENCODER (LE)
12.3.1 Introduction

The Linear Encoder is an incremental, high accuracy measurement module. This
module does not support dynamic or buffered modes. Readings are returned via the
ReadingInUnits property.

12.3.2 Linear Encoder & Reference Mark

All Linear Encoders are incremental in reading; they lose their datum on power down.
A reference mark is provided in order to provide an absolute datum.

This eliminates the need to re-master and calibrate your sensor. It is simply required to
extend/retract the sensor’s tip which can be done comfortably with pneumatic /
motorized linear encoders.

The Reference Mark is located approximately Smm from fully in (retracted).
It will only be read when moving INWARDS. During outward movement the Reference
Mark will not be read.

The following instructions on use of the Reference Mark are taken from Orbit Library
Test:

Select Read In 'Counts' or 'Units' (Raw Counts or Units Of Measure)

Select 'Learn' Mode to store the value read at the reference mark.
Before starting, ensure that the module has already been set to the desired reading
via the 'Preset' option in the 'Module' tab.

Click 'Find RefMark' to start.
Now move the tip of the LE until the reference mark has been found. Once found, the
'Reference Mark Reading' should be stored for future use in 'Recall' mode.

Select 'Recall' Mode to set the module back to the 'Learn’ value. Enter the previously
stored 'Reference Mark Reading' (obtained via 'Learn' Mode) in the 'Recall Value To
Set'. Click 'Find RefMark' to start.

Now move the tip of the LE until the reference mark has been found. Once found, the
reading will be restored to that in 'Learn' Mode.

Click ‘Stop Searching’ to abort finding the Reference mark.

502989 - Orbit3 Software manual Issue 14 Page 77 of 94

12.4 ENCODER INPUT MODULE (EIM)

12.4.1 Introduction

The Encoder Input Module (EIM) is an Orbit Module which can interface to incremental
and rotary encoders with square wave outputs, allowing these sensors to be interfaced
into the Orbit Measurement System.

Using rotary encoders via the EIM in conjunction

with linear measurement sensors allows the Orbit Measurement System to perform
part profiling.

The EIM can be read on command like any other Orbit Module including as part of a
dynamic collection.

The EIM can also be used provide synchronization for a dynamic collection (External
Master Mode). Similarly, it can be used to Externally trigger/sample readings in
buffered mode.

12.4.2 EIM Module Properties

Inputs Single Ended
(EimInterfaceType Differential
Property)
Interpolation X1 (default)
(QuadratureMode X2
Property) X4
Count AB
Count DIR
Reference Pulse Do nothing

(RefAction Property)
Reset counter on each reference pulse

Preset counter on each reference pulse

Reset counter on first reference pulse only
Preset counter on first reference pulse only
Reset counter on first reference pulse only and
enable, Sync, Transmit and Holdoff functions
(used in dynamic external master mode)
Preset counter on first reference pulse only
and enable, Synch, Transmit and Holdoff

functions (used in dynamic external master
mode)

Refer to the Orbit Library Code Reference for details and the Orbit Library Test for
example code.

502989 - Orbit3 Software manual Issue 14 Page 78 of 94

file:///Z:/Engineering/GDavis/Pending_stuff/EDCR22559%20o3spw/502989/source/502989%20-%20Orbit3%20Software%20manual.odt#4.2.2.Orbit%20Library%20Code%20reference%7Coutline

12.5 DIGITAL INPUT OUTPUT MODULE (DIOM)

12.5.1 Introduction

The Digital Input / Output Module (DIOM) enables the ‘Orbit Network’ to interface with
the outside world. The module provides 8 general purpose input / output lines. Each
line can be individually configured as Input or Output.

Although there are no specific commands for use with the DIOM, the application code
writer should be mindful of one important fact. The DIOM has a common Input/Output
bus. Therefore, to use a particular line for an input, the corresponding Output line must
first be set High (via PresetinCounts).

Default state on all pins at switch on is INPUTs.

The DIOM uses the following commands to access its common Input/Output bus.

12.5.2 Read Inputs

Uses ReadingInCounts property.
The 8 least significant bits of the returned 32-bit number show the state of the input
pins.

Each pin MUST first be set high (via PresetinCounts) if it is to be used as an input.
A Low state on the input pin will be returned as a logic Low (0).
A High state on the input pin will be returned as a logic High (1).

12.5.3 Set Outputs
Uses PresetinCounts command.

The 8 least significant bits of the 32-bit number are used to set the output pins.
Alogic Low (0) will turn the output driver ON; The output pin will be set Low (0 V).
A logic High (1) bit will turn the output driver OFF; the pin will be pulled up to Orbit
+5 V via 4K7 and series diode or external load if connected.

The pin MUST be set High if it is to be used as an input.

Note. A Preset of >255 will cause a ‘Preset value out of range (0 to 255)" exception to
be thrown.

12.5.4 Improving Reading Integrity

When reading external inputs, it is wise to issue multiple reads to help reduce the
effects of:

+ External electrical interference

+ Switch bounce

* Noisy supplies

* Mechanical vibration

Otherwise, a single read may miss the event or may even just see noise.

502989 - Orbit3 Software manual Issue 14 Page 79 of 94

12.5.5 DIOM operation example

In the example below, Port 1 (bit 1) is driving a load and Port 0 (bit 0) is an input to a
switch. No other port is used in this example.

All example input states are read back correctly except the last, where Port 1 (bit 1)
output driver is switched ON, causing a false input state to be read by the Port 1 input
buffer.

Note. This last condition is an example of the DIOM monitoring its own
output state

Error - bit O should be set 1o 1
(driver OFF) as port is being used
as an input Inside DIOM

@

=
&
B
o

Orbit Command

Load ON Load ON

Output driver
set by
PresetinCounts

I

Load

H3IAIO LNdLNO

[A[=[e[«]s[=]E]

(oo [0 [oo [u]

32 bil number

SR I U R -]

5

Switch Switch
OPEN CLOSED

~

Switch Switch
OPEN CLOSED

~

> R Switch Switch
Orbit Command OPEM | CLOSED

sk ok, e |
e O =]

il
p

@
=

-
s

suid O/

0 0 0 0

Input buffer state
read by / o
1

ReadinglnCounts

[] e o]]=]=FEIE]

W] [

EN N EINETY

32 bit number

N m R WN - O
EP R N]
O —— ..
S sras v
H344N49 LNdNI

QAAAAAJ
[Fe[=[<[=]=[E=]

1
1
1
1
1
1
1

Error - the input buffer sees a low
because the driver output is ON. The
switch state cannot be detected

Remember: Input and output ports are internally connected.
Therefore, for each 1/O line, the output driver must be OFF (bit=1) before it can be
used as an input.

502989 - Orbit3 Software manual Issue 14 Page 80 of 94

12.6 DIGIMATIC INTERFACE MODULE (DIM)

12.6.1 Introduction
The Digimatic Interface Module is designed to connect to any Digital Gauge with a
Digimatic code output. The connection to the gauge is via a 10 way male connector,
which will connect to any Mitutoyo Digimatic compatible gauge plug.

The reading mode can be continuous, triggered via the gauge data switch or triggered
from software. The ReadinglnUnits property is used to return the reading.

Before connecting to Orbit, it is important to have the Digital Gauge switched on. This
will ensure that the Orbit Library is able to Notify the Module correctly.

12.6.2 Changing the Mode of Operation
When in its default state after power up the DIM will read the gauge continuously. To
set other reading modes, change the ReadMode property of the DIM.
See the Orbit Library Code Reference for details.

12.6.3 Update Reading Information
If the units of measure is changed on the Digimatic gauge itself, then the Orbit Library

needs to be alerted to this.
This can be actioned using the 'Updatelnfo' method of the DIM.

502989 - Orbit3 Software manual Issue 14 Page 81 of 94

file:///Z:/Engineering/GDavis/Pending_stuff/EDCR22559%20o3spw/502989/source/502989%20-%20Orbit3%20Software%20manual.odt#4.2.2.Orbit%20Library%20Code%20reference%7Coutline

12.7 LASER TRIANGULATION SENSORS (LT & LTH)

The Laser Triangulation Sensors provide non contacting measuring to be integrated into
the Orbit Network.
There are two types available:

* LT — Entry level product.
+ See the separate user leaflet (503145), supplied with the product, for
operational details.
* LTH — High performance product.

» See the separate user leaflet (503158), supplied with the product, for
operational details.

They are interfaced in the same way as a standard Digital Probe

Laser specific configurations such as laser beam on/off (BeamOn) are configured in the
OrbitModuleLT / OrbitModuleLTH objects.

Overall control of all laser beam states in normal reading mode can be enabled from the
Network Object (BeamControl). This sequences the laser beams and provides a
stabilisation time (eg turns off the other beams and waits for a stable reading before re-
enabling and returning a reading from any specific Laser).

12.7.1 LT Configuration

Although the LT product is used in the same way as a standard Digital Probe, there is a
configuration option on the module for scaling the output reading to a different range.
Therefore ensure that any software using the Orbit library can accommodate the scale
changes. As the output from the Orbit module will be 0 to MaxCount in all cases. (Max
count = 16384 for 14 bit resolution, 65536 for 16 bit and 262144 for 18 bit).

Direct enabling and disabling of the laser beam is possible using the BeamOn Property.

12.7.1.1 Reading and Writing Settings

OrbitModuleLT It = (OrbitModuleLT)Orbit.Networks[0].Modules[0];
[t.BeamOn = false; // to turn the beam off

12.7.2 LTH Configuration

The LTH has a number of additional readable and writable configuration settings. The key
settings being the Filter rate and the Level Cut Time; both of which can be read and set.
There are also readable settings; Model Number, Serial Number and the Firmware Version
of the laser unit.

12.7.21 Reading and Writing Settings

A setting specific to an LTH can be modified or read by first casting the LTH OrbitModule
object connect to a network to an OrbitModuleLTH:

OrbitModuleLTH Ith = (OrbitModuleLTH)Orbit.Networks[0].Modules[0];

The OrbitModuleLTH object will then make available LTH specific settings:

Ith.LevelCutTime = 10000; // 100ms

See the OrbitLibraryTest's ModuleLTHUC class for a more detailed example.

502989 - Orbit3 Software manual Issue 14 Page 82 of 94

12.8 CONFOCAL MODULE

The confocal system is based off reflected light and therefore has properties that can be
configured to enable users to get the best reading possible from the device.

12.8.1 Optimising settings

To optimally use the confocal system you want the signal bar to be approximately half to
two thirds of the way up when in range on a target, its important to note that due to the
nature of the technology signal strength will vary slightly with position and signal saturation
will result in loss of accuracy.

To achieve a good signal the integration time and brightness should be set when in range
of the target material to be measured, note changing integration will affect the
responsiveness of the system so increasing bright levels is often preferable.

The High Precision reading mode provides maintains its accuracy better than the normal
precision mode over surfaces with a slight texture (non polished and non glassy) surfaces.

12.8.2 Confocal Properties

Confocal specific device properties can be accessed by casting to the confocal device type
eg:
OrbitModule CONFOCAL MyModule = (OrbitModuleCONFOCAL)OrbModules[Moduleldx];

12.8.2.1 Get/Set Integration

Note this property is non volatile — it is remembered through a power cycle

To maintain responsiveness of the system it is often favourable to increase brightness
rather than change the integration level, however if the signal level is still low after
increasing the bright level it can be adjusted either using the menu or the orbit interface.
The integration time is the exposure of device in milliseconds and can be set by the

following method:
MyModule.IntegrationTime = Time_5mS;

Possible values (defined in elntegrationTime): Time_5mS, Time_10mS, Time_20mS,
Time_50mS.

12.8.2.2 Get/Set Brightness

Note this property is non volatile — it is remembered through a power cycle

Brightness affects the light output of the device and should be adjusted before integration.
There are 8 predefined levels of light that can be selected (Bright_1 to Bright_8) defined in
eBrightness.

The property is set using the following command:
MyModule. Brightness = Bright_1;

12.8.2.3 Get/Set Read Mode

Note this property is non volatile — it is remembered through a power cycle

There are 2 read modes in the device High Precision and Normal Precision, for highly
polished mirror surfaces or glassy surfaces the normal precision is suitable and gives high
bandwidth performance. For textured/non polished/non glassy surfaces normal precision
mode is less suitable and high precision mode should used instead.

The possible values are: HighPrecision, and NormalPrecision defined in
eConfocalReadMode

The property is set using the following command:
MyModule. ReadMode = HighPrecision;

12.8.2.4 Get/Set Averaging
Note this property is non volatile — it is remembered through a power cycle.

502989 - Orbit3 Software manual Issue 14 Page 83 of 94

It should be noted that the bandwidth is affected by the read mode and the integration time
and averaging , this should be considered when selecting the level of averaging.
There are 9 possible averaging values that can be selected incrementing in powers of 2

from (average to average256) defined in eAveraging.
MyModule.Averaging =average16;

12.8.2.5 Read Second Channel in Units
This property gets the current reading for the second channel if there is one, if there is not
a reading of there is a range error, NaN (not a number) is returned.

double MyReading = MyModule.ReadingInUnits B;

502989 - Orbit3 Software manual Issue 14 Page 84 of 94

13 ORBIT ERROR CODES AND ERROR HANDLING
13.1 GENERAL

When communicating with the Orbit Library, errors are returned via exceptions.

Errors can be broken down into the following sections:
» Orbit Library Errors
The information passed to the Library is incorrect or not in the required format — or
the requested function is not allowed in the current state.
* Orbit Controller Errors
The command failed to send from the Orbit Controller.
* Module Errors
The module has been asked to perform a function that is not allowed or the module

has a fault.
The Orbit Library decodes the returned errors and throws an exception to the user

application with a meaningful text (Exception.Message property)of the error. In this
way, the user application avoids having to decode the actual error code.

13.2 HANDLING ERRORS

13.2.1 Error Handling When Using the Orbit Library

An error will generate an exception in the Orbit Library. In C# and C++ , a try and catch
block surrounding the call will 'handle' the exception.

Refer to the Orbit3 Code Examples for examples on error handling with the Orbit
Library.

13.3 COMMON ERRORS
Below are listed common error codes.

13.3.1 No Error
No exception thrown implies that the requested command has been successful.

13.3.2 Under and Over Range
Digital Probe, LT, LTH and AIM only

Under and over range are special cases of errors. These are ‘soft’ errors and thus will
not cause an exception to be thrown from the Orbit Library.
Instead, the ModuleStatus object should be used.

13.3.3 Overspeed Error

Linear Encoder only

This error is returned when the LE has been moved too fast. The readings
(incremental) are now suspect and thus should be reset. The Orbit Library will raise an
exception for this error.

502989 - Orbit3 Software manual Issue 14 Page 85 of 94

13.4 MODULESTATUS
This object is used to read the module's status and error conditions (e.g. under and
over range fora DP /LT / LTH / AIM).

Note that ModuleStatus.Error and ModuleStatus.ErrorString are updated
automatically when reading a module.

Refer to the Orbit Library Test application for example code.

502989 - Orbit3 Software manual Issue 14 Page 86 of 94

13.5 ORBIT ERRORS

Value -
Error (Decimal) Description
NoError 0 No Errors On the orbit Module
: T

ORBIT 5V CURRENT LIMIT 209 Cont.roller is current limiting! PSIM

required or short on network
ORBIT_5V_LOW 210 Orbit Low Voltage - PSIM required
ORBIT 5V _HIGH 211 \r/]\ilsrrlmng Orbit Supply voltage is too
BLOCK_CHECKSUM_ERROR 224 Block Checksum error
XRAM_CHECKSUM_ERROR 295 XRAM Checksum Error - Fault on

external memory
BAD_START_ADDRESS 226 Bad Start Address
FLASH_VERIFY_ERROR 227 Flash Verify Error

Dynamic Buffer Underrun

This error indicates that windows

has not been able to read the
DYNAMIC_BUFFER_UNDERRUN 241 buffered data for longer than the

controller has space to buffer the

continuous dynamic data
DynamicStopped 242 This indicates that dynamic is

stopped
Sync Timing Violation

This occurs when a module is
acting as master for the dynamic

SYNC_TIMING_VIOLATION 250 collection and its trigger source
requires it to send a sync before the
previous data has finished being
sent.

Framing Error On RS485

FRAMING ERROR 251 L
- Communications
OVERRUN ERROR 250 Overrun I_Erro_r On RS485
- Communications
Checksum 053 Cheqksum Error on buffered
readings
Parity 054 Parity Err_or Qn RS485
Communications
Timeout 255 Orbit Command Timeout Error
Empty 4194304 Empty - No Dynamic Data Here
Base Part of module error code -
ModuleBase 8448 error detailed in lease significant
byte
COIL_RANGE 8450 Coil Frequency out of range
NO_CMD 8451 Unknown Orbit Command

502989 - Orbit3 Software manual Issue 14 Page 87 of 94

BCAST_NA

ADDR_NA

ADDR_CH_NA

WRONG_MODE
NO_CALTABLE

MISSED_RDG

RDG_HOLDOFF
FRAMING_ERR

GT16BIT

UnderRange
OverRange

MULT_OVERFLOW

BUFFER_FULL
RDBFR_NOT_VALID
READ_NOT VALID
BFR_RD_WR_ERR
BFR_NOT_EMPTY

BFR_EMPTY_STOP
DIFF_NOT_SET
DIFF_WAITING

DIFFMODE_NA
NUM_OVERFLOW

SUM_OVERFLOW
DIFF_RUNNING
DIFF_NA_HIRES

ARGUMENT_NOT_VALID

MODE_NOT _VALID
DELAY_NOT_VALID
SYNC_WAITING

502989 - Orbit3 Software manual

8452

8453

8454

8455
8456

8457

8458
8459

8465

8466

8467

8468

8470
8471
8472
8473
8474

8475
8481
8482

8483

8484

8485
8486
8487

8511
8512
8513
8514

Issue 14

Broadcast Address Not Allowed
(Legacy)

Broadcast Address 0 Expected
(Legacy)

Address Change not allowed (in

difference/buffered or dynamic
mode)

Cal Mode Pin High (Legacy)

No Calibration Table - Probe
uncalibrated

Reading Missed - New Adc cycle
started before previous reading
read (Legacy)

Reading Holdoff - Reading not valid
- waiting for measurement
(Legacy)

Error - Greater than 16 bits

between calibration points - bad cal
table

Under Range - Probe outside of
normal reading range

Over Range - Probe outside of
normal reading range

Calibration - Multiply overflow error
- bad cal table

Buffer Full

Read Buffer Not Valid
Read Not Valid

Buffer Read Write Error
Buffer Not Empty

Buffer is empty and probe is
stopped

Difference Mode Not Set

Difference waiting for triggered to
be set

Difference mode not allowed
acquire flag set (Obsolete)

Difference count overflowed
(greater than 3 bytes)

Difference sum overflowed (greater
than 5 bytes)

Difference mode set and running

Difference mode not allowed at this
resolution

Argument Not Valid
Mode Not Valid
Sync Waiting

Page 88 of 94

SYNC_RUNNING 8515 Buffered Sync Running
SAMPLE_RUNNING 8529 Buffered Sample Running
AVERAGE_NOT_VALID 8544 Average Not Valid
AVE_CHANGE_NOT_ALLOWED 8545 Average Change Not Allowed
RESOLUTION_NOT_VALID 8546 Resolution Not Valid
RESO_CHANGE_NOT_ALLOWED 8547 Resolution change not allowed
PROBE_SET TO_HI RES 8548 Probe set to High Resolution
PROBE_SET TO LO _RES 8549 Probe Set to Low Resolution
NOT_IN_NORMAL_MODE 8550 Notin Normal Mode
ADDR_RANGE_ERROR_DYN 8551 Dynamic - Address Range Error
NOT_IN_HIGH_BAUD 8552 Error Not in high baud rate
INPUT_TYPE_NOT_VALID 8560 Input Type Not Valid
QUAD CODE_NOT_VALID 8561 Quadrature code not valid
REF_ACTION_NOT_VALID 8562 Reference Action Not Valid
PRESET _OUT_OF RANGE 8565 Preset out of range
PRESET_IGNORED 8566 Preset Ignored
ENCODER_ERROR 8567 Encoder error
SYNC_GAP_ERROR 8568 Dynamic Sync Gap Error
CONTROL_GAP_ERROR 8569 Control Gap Error
Voltage_Error_5V_LOW_WARNING 8592 Orbit 5V Low Warning
Voltage_Error_5V_TOO_LOW 8593 Orbit 5V Too Low Error
Voltage Error_ 5V_TOO_HIGH 8594 Orbit 5V Too High Error
Voltage_Error_5V_HIGH_WARNING 8596 Orbit 5V High Warning
ADC_FAULT 8595 ADC Fault
Inph_Low 8624 In Phase Low
Inph_High 8625 In Phase High
Quad_Low 8626 Quadrature Low
Quad_High 8627 Quadrature High
Counter_Error 8628 Counter Error
Ref_running 8643 Refmark mode set and running
Too_ fast 8644 Too Fast - Over speed Error
Low_signal 8645 Low Signal Flag
INCOMPATIBLE_BOARD 8688 Incompatible Board
INCOMPATIBLE_STROKE 8689 Incompatible Stroke
INCOMPATIBLE_COMPANY 8690 Incompatible Company
BAD_CALIBRATION_DATA 8691 Bad Calibration Data
INCOMPATIBLE_HOTSWAP 8692 Incompatible Hotswap
ONEWIRE_HOTSWAP 8693 One Wire Hotswap Error
INCOMPATIBLE_PROBE 8694 Incompatible Probe
NO_PROBE 8695 No probe connected to PIE case
INCORRECT_COMMAND_FORMAT 8696 Incorrect command format
COMMUNICATIONS ERROR 8697 Communications Error
OverAndUnderRange 65537 E)/I\(;?jre?nd Under Range (Difference
Unknown 65538 Unknown error

502989 - Orbit3 Software manual Issue 14 Page 89 of 94

502989 - Orbit3 Software manual Issue 14 Page 90 of 94

14 APPENDIX A - ORBIT COMPATIBILITY ROADMAP

The Orbit system has evolved over the years and it is now in its third generation.
Some features will only be available with newer hardware and some features have
been removed over time.

A summary of the Orbit commands and hardware with their usage is provided on the
following pages.

14.1 MODULES

14.1.1 Orbit3

The Orbit Library provides a totally different software interface to the original Orbit
COM and DLL libraries. Therefore a simple comparison of commands is difficult.
Generally, it provides the same level of commands, but with a much simplified user
interface.

For the full list of Orbit1,2, & Orbit3 Orbit COM library commands, see the original
Orbit3 Software manual.

Key features with Orbit3 products are:

* Readburst

* Dynamic2

* Orbit Ultraspeed (2.25MBaud)
* Hotswap

14.1.2 Module Release History
This section details when particular Modules were introduced.

Orbit1
DP, LE, DIOM

Orbit2
DP, LE, DIOM, AIM, EIM, DIM

Orbit3
DP, LT, LTH, LE, DIOM, AIM, EIM, DIM

502989 - Orbit3 Software manual Issue 14 Page 91 of 94

14.1.3 Module Compatibility

The Orbit Library handles compatibilities of all versions of each Module type, from
Orbit1 through to present day.
The table below details which features are available with the various Modules and
legacy products.
Where Orbit Modules are denoted by a number, i.e.

* '1"denotes Orbit1 Modules

« '2'denotes Orbit2 Modules

+ '3'denotes Orbit3 Modules

Note. The table only covers the features that do not work on all Module types.

Feature DP LT LTH | AIM | LE |DIOM | EIM | DIM
Orbit Standard Speed
(187.5k Baud) P 1,2,3 3 3 23 123123 23 | 23
Orbit High Speed
(1.5M B%ud)p 2,3 3 3 | 23| 3 | 23| 23 23
Orbit Ultra Speed
(2.25M Baudr; 3 3 3333 38
ReadBurst 3 3 3 3 3 3 3 3
Dynamic 2,3 3 3 2,3 3 2*3 | 23
Dynamic2 3 3 3 3 3 3 3 3
Buffered * 1*,2*,3 3 3 2*3 3
Difference 1,2,3 3 3 23 | 1,23
HotSwap 3 3 3 3 3 3 3 3
Ping 3 3 3 3 3 3 3 3
Resolution 2,3 3 3 2,3
Averaging 2,3 3 3 2,3
Preset 1,23 | 1,23 | 23
Ref Mark 1,2,3
Ref Action 2,3
Quadrature 2,3
Direction 1,2,3
External Master 2,3
TCON clear 3 3 3 3 3 3 3 3
Firmware upgradeable 2,3 3 3 2,3 3 2*3 | 23 2,3
Diagnostic / Status Leds 3 3 3 3 3 3 3 3
150 Modules per network 3 3 3 3 3 3 3 3

Notes.

502989 - Orbit3 Software manual

* Pre Orbit3, Buffered Mode was a factory installed option only.
** Orbit2 DIOM was only Dynamic capable and Firmware upgradable from 2008
onwards.

Issue 14 Page 92 of 94

14.2 CONTROLLERS & SOFTWARE

14.2.1 Orbit3

The following Orbit Controllers are all compatible with the Orbit Library.

Hardware / RS232IM RS485IM
Mode MK2 MK2 WIM USBIM MK2 ETHIM

Standard Orbit

v v v v v
Speed (187500)
Orbit High Speed v v v v v
(1.5M)
Orbit Ultra Speed v
(2.25M)
Buffered Mode v v v v v
Readburst v v v v v
Dynamic Mode v
Dynamic2 v
Orbit Ping v v v v v
Command
150 Modules / v v v v v
network

Software
Orbit Library v v v v v
Serial Command v v v
Capable v v Virtual Com Virtual Com Via 'Sockets
P Port Port

Note.

The above Orbit Controllers are also compatible with the Orbit COM/DLL Libraries, but
operate with reduced functionality.
For details, see the Compatibility Roadmap section of the Orbit3 Software manual

(502915).

The following Orbit Controllers are not compatible:
Orbit PCI Card, PC104 Card & USBIM.

502989 - Orbit3 Software manual

Issue 14

Page 93 of 94

15 REVISION HISTORY

REVISION DATE COMMENTS
1 16/06/11 Initial Issue
2 30/09/11 References to .NET updated
3 14/11/12 Linear Encoder (LE) added
4 20/05/13 Orbit high performance Laser Triangulation (LTH)
added
5 23/10/13 Added setting of default Averaging & Resolution
6 04/11/13 LT & LTH Laser beam on/off added
7 22/11/13 Wireless Interface Module (WIM) added
8 09/03/15 Added Confocal Module
9 04/08/15 Added Orbit3 Excel® add-in & connecting to WIM
Controllers method
10 18/09/15 References to 'menu screen' removed as no longer
provided
11 02/11/15 Added Orbit3 Confocal Updater
12 06/11/15 Added Confocal Configuration
13 20/09/16 Added C# example project reference
14 14/10/16 Added AllowOSSuspend reference 10.2.2

502989 - Orbit3 Software manual

Issue 14 Page 94 of 94

	1.1 Documentation Cross Reference
	1.2 Trademarks and Copyrights
	1.3 Contact Information
	2 Table of Contents
	3 Introduction
	3.1 Scope
	3.2 Navigating this document
	3.3 Terms and Abbreviations
	3.3.1 Abbreviations

	4 Software Interfacing to Orbit
	4.1 Introduction
	4.2 OrbitLibrary
	4.2.1 Compatibility
	4.2.2 OrbitLibrary Code Reference
	4.2.3 OrbitLibrary Code UML Diagram

	4.3 Orbit Library Test
	4.4 OrbMeasure Lite
	4.5 Orbit3 Excel® add-in
	4.6 Orbit3 Code Examples
	4.6.1 Excel VBA COM Example

	4.7 Using Orbit without Windows
	4.8 Orbit Troubleshooting

	5 Orbit Utility Programs
	5.1 Orbit3 Registration
	5.2 Orbit3 Reporter
	5.3 Orbit3 Updater
	5.4 Orbit3 Network Power Calculator
	5.5 RS232IM Helper
	5.6 OrbitACS Configurator
	5.7 Orbit3Gateway Configurator
	5.8 PIM Utility
	5.9 Orbit3 Confocal Updater

	6 Power Up Conditions
	6.1.1 RS232IM Default Baud Rate

	7 Measurement Modes
	7.1 Overview
	7.2 Basic Measurement Mode
	7.3 Difference Mode
	7.4 Buffered Mode
	7.4.1 Introduction
	7.4.2 Synchronized Mode
	7.4.3 Sample Mode
	7.4.4 External Master Mode - Using EIM

	7.5 ReadBurst
	7.6 Dynamic Modes
	7.6.1 Introduction to Dynamic Modes
	7.6.2 Introduction to Dynamic 2
	7.6.3 Why Use Dynamic Mode
	7.6.4 Collection Rate
	7.6.5 Implementing Dynamic2
	7.6.6 Dynamic Mode System Constraints
	7.6.7 Dynamic Data
	7.6.8 Dynamic External Master Mode
	7.6.8.1 EIM DynamicMasterMode Property
	7.6.8.2 EIM TxSync Property
	7.6.8.3 Sync Pulse Rate when using EIM as a Sync source

	7.6.9 Requirements for Dynamic Mode
	7.6.10 Hints and Tips on Using Dynamic Mode
	7.6.11 Dynamic Schemes
	7.6.11.1 Dynamic Scheme 1 – USBIM controller as the Sync source
	7.6.11.2 Dynamic Scheme 2 - Encoder as the Sync source

	7.7 Reading Rate Comparison
	7.7.1 USBIM MK2 Controller reading rates
	7.7.2 ETHIM Controller reading rates
	7.7.3 RS232IM MK2 Controller reading rates
	7.7.4 WIM Controller reading rates

	7.8 Summary

	8 Orbit Features and Commands
	8.1 HotSwap
	8.1.1 Using Orbit3 without Hot Swap

	8.2 FindHotswapped
	8.3 Clear TCONs
	8.4 Ping
	8.5 Readinginunits
	8.6 Orbit Speed

	9 Orbit Library
	9.1 Overview
	9.1.1 Networks Object
	9.1.2 Network Object
	9.1.3 Modules Object
	9.1.4 Module Object

	9.2 Referencing the Orbit Library
	9.3 Orbit Library COM Interface
	9.4 Migrating from the original Orbit COM Library

	10 Example Code - Walk through
	10.1 Overview
	10.1.1 COM Interface

	10.2 Connecting to the Orbit Library
	10.2.1 Initialising The OrbitServer
	10.2.2 Connecting to The OrbitServer
	10.2.2.1 WIM Controllers

	10.2.3 Disconnecting from The OrbitServer

	10.3 Listing Orbit Networks
	10.4 Adding Orbit Modules
	10.4.1 Listing Orbit Modules
	10.4.2 Add Module
	10.4.3 Notify Add Module
	10.4.4 Ping
	10.4.5 FindHotSwapped
	10.4.6 Delete Module
	10.4.7 Clear All Modules
	10.4.8 Clear TCON Memory
	10.4.9 Change Address
	10.4.10 Load and Save Network

	10.5 Getting Module Readings
	10.5.1 Configuring Modules
	10.5.2 Module Status

	10.6 Reading Modes
	10.6.1 ReadBurst Mode
	10.6.2 Dynamic Modes 1 & 2
	10.6.2.1 Dynamic External Master Mode

	10.6.3 Buffered Mode
	10.6.4 Difference Mode
	10.6.5 RefMark Mode

	11 Orbit Library Test
	11.1 Introduction
	11.2 Features
	11.3 User Guide
	11.3.1 Getting Started
	11.3.2 Usage
	11.3.2.1 Server Tab
	11.3.2.2 Network Tab
	11.3.2.3 Module Tab
	11.3.2.3.1 Resolution and Averaging Configuration
	11.3.2.3.2 Pre-set Configuration
	11.3.2.3.3 EIM Configuration
	11.3.2.3.4 DIM Configuration
	11.3.2.3.5 LE Configuration
	11.3.2.3.6 LT Configuration
	11.3.2.3.7 LTH Configuration
	11.3.2.3.8 Confocal Configuration

	11.3.2.4 Read Burst Mode Tab
	11.3.2.5 Dynamic Mode Tab
	11.3.2.6 Difference Mode Tab
	11.3.2.7 Buffered Mode Tab
	11.3.2.8 Ref Mark Mode Tab
	11.3.2.9 Results Window

	11.4 Source Code
	11.4.1 Development Tools
	11.4.1.1 Microsoft Visual Studio C# Express

	11.4.2 Opening the Project File
	11.4.2.1 Compiling
	11.4.2.2 Running

	11.4.3 Navigating the Source Code

	12 Module Specific operation
	12.1 Digital Probe (DP)
	12.1.1 Introduction
	12.1.2 Programmable Resolution
	12.1.3 Programmable Electrical Measurement Bandwidth

	12.2 Analogue input module (AIM)
	12.3 Linear Encoder (LE)
	12.3.1 Introduction
	12.3.2 Linear Encoder & Reference Mark

	12.4 Encoder Input Module (EIM)
	12.4.1 Introduction
	12.4.2 EIM Module Properties

	12.5 Digital Input Output Module (DIOM)
	12.5.1 Introduction
	12.5.2 Read Inputs
	12.5.3 Set Outputs
	12.5.4 Improving Reading Integrity
	12.5.5 DIOM operation example

	12.6 Digimatic Interface Module (DIM)
	12.6.1 Introduction
	12.6.2 Changing the Mode of Operation
	12.6.3 Update Reading Information

	12.7 Laser Triangulation Sensors (LT & LTH)
	12.7.1 LT Configuration
	12.7.1.1 Reading and Writing Settings

	12.7.2 LTH Configuration
	12.7.2.1 Reading and Writing Settings

	12.8 Confocal Module
	12.8.1 Optimising settings
	12.8.2 Confocal Properties
	12.8.2.1 Get/Set Integration
	12.8.2.2 Get/Set Brightness
	12.8.2.3 Get/Set Read Mode
	12.8.2.4 Get/Set Averaging
	12.8.2.5 Read Second Channel in Units

	13 Orbit Error Codes and Error Handling
	13.1 General
	13.2 Handling Errors
	13.2.1 Error Handling When Using the Orbit Library

	13.3 Common Errors
	13.3.1 No Error
	13.3.2 Under and Over Range
	13.3.3 Overspeed Error

	13.4 ModuleStatus
	13.5 Orbit Errors

	14 Appendix A - Orbit Compatibility Roadmap
	14.1 Modules
	14.1.1 Orbit3
	14.1.2 Module Release History
	14.1.3 Module Compatibility

	14.2 Controllers & Software
	14.2.1 Orbit3

	15 Revision History

