Best Products

EDITION

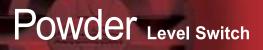
General Catalogue Powder Level Switch Powder & Liquid Level Switch Non-Contact Level Meter Non-Contact Level Meter Flow Sensor Contact Level Meter Liquid Level Meter & Switch Conveyor Peripherals Environment Measurement Instrument Special Measurement Instrument

KANSAI Automation Co., Ltd.

Corporate Philosophy

Aiming for A RAISON D'ETRE indispensable to the betterment for life of mankind with OUR ZEAL AND OUR ORIGINAL TECHNOLOGY

Management Creed


Zeal and Originality

PASSION above all can be a foundation for strength. Exerting our knowledge and making the impossible come true in the firm brief that our possibilities may be expanded infinitely

ORIGINALITY can page a new path. Exerting our technical capabilities and turning adversity to leap in the hope that our dream may come true.

CONTENTS

Powder Level Switch 2–3
Powder & Liquid Level Switch · · · · · · · · · · · · · · · · · · ·
Non-Contact Level Meter 5
Flow Sensor · · · · · · · · · · 5
Contact Level Meter · · · · · · · · · · · · · · · · · · ·
Liquid Level Meter & Switch · · · · · · · 8
Conveyor Peripherals · · · · · · 9
Special Measurement Instrument 10-11
Certified Explosion-proof Instruments: Usable Range Of Explosive Gas ···· 11
Chemical Resistance Table12
Characteristic Table Of Fluorocarbon Resin · · · · · · · · · · · · · · · · · · ·
Table Of Recommended Sensitivity And

Swing Type Level Switch

wing!!

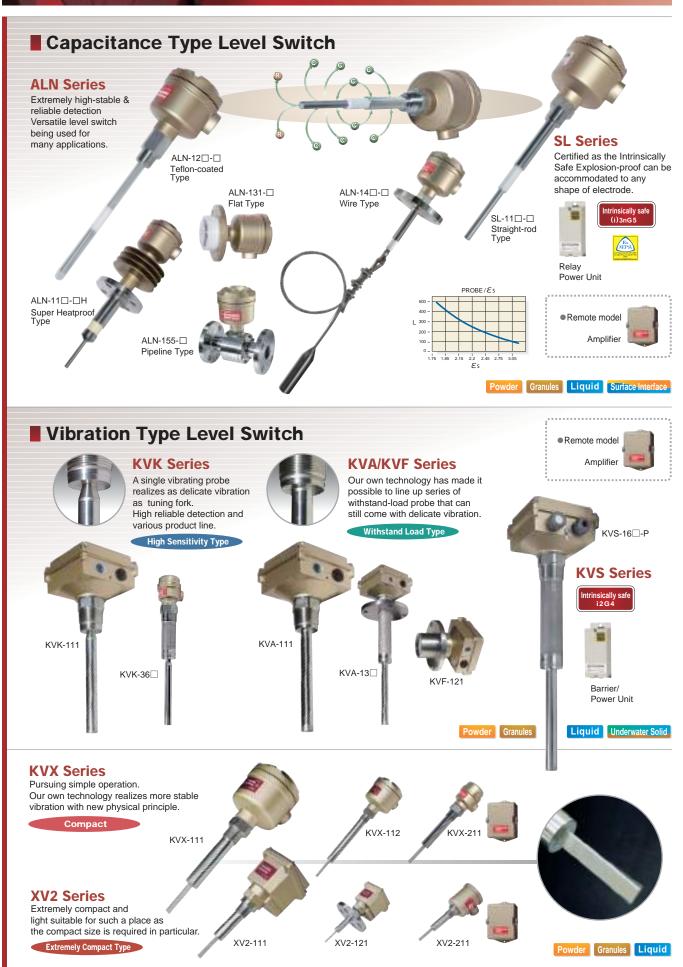
Epoch-making product of Powder level detection.

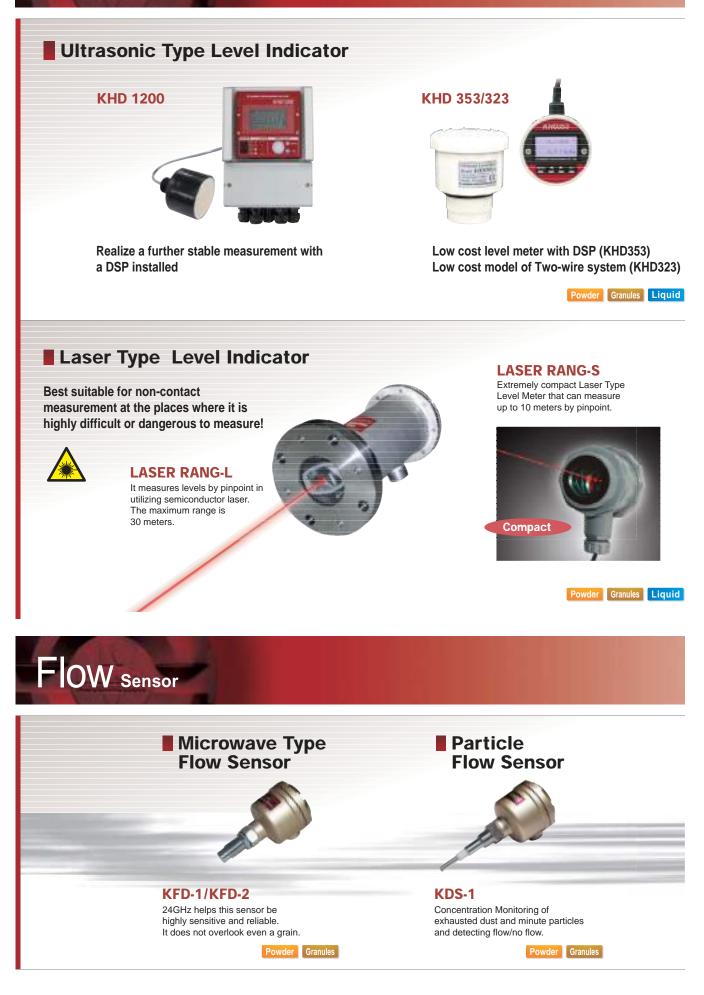
Newly developed "SWING MASTER" Future standard level switch for powder.

One and only development for Powder Level Switch, based on our extensive experiences.

Powder Level Switch


Rotary Paddle Type Level Switch


NNL/NNM Series Expendable parts in a motor removed and developing the original switching structure developped. Motor unit operates reliably for a long period of time.


LEMICON Series Compact, light weight, and lowest price on top of high efficiency and quality.

Powder & Liquid Level Switch

Non-Contact Level Meter

Contact Level Meter

Sounding Type Level Indicator

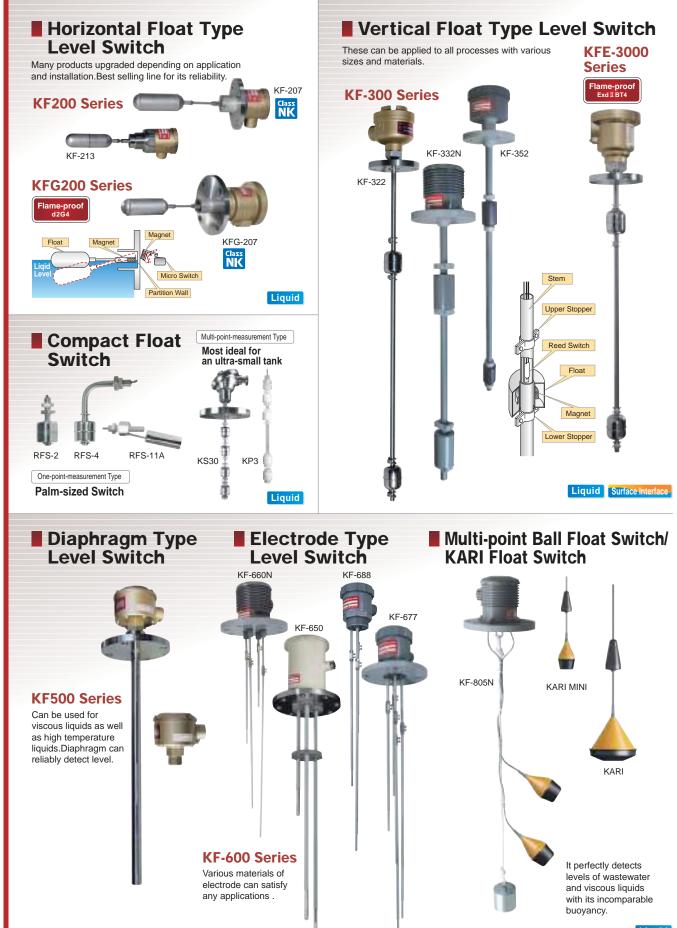
Various product lines. They can be applied to all processes, and they are the best selling lines for their reliability.

Contact Level Meter

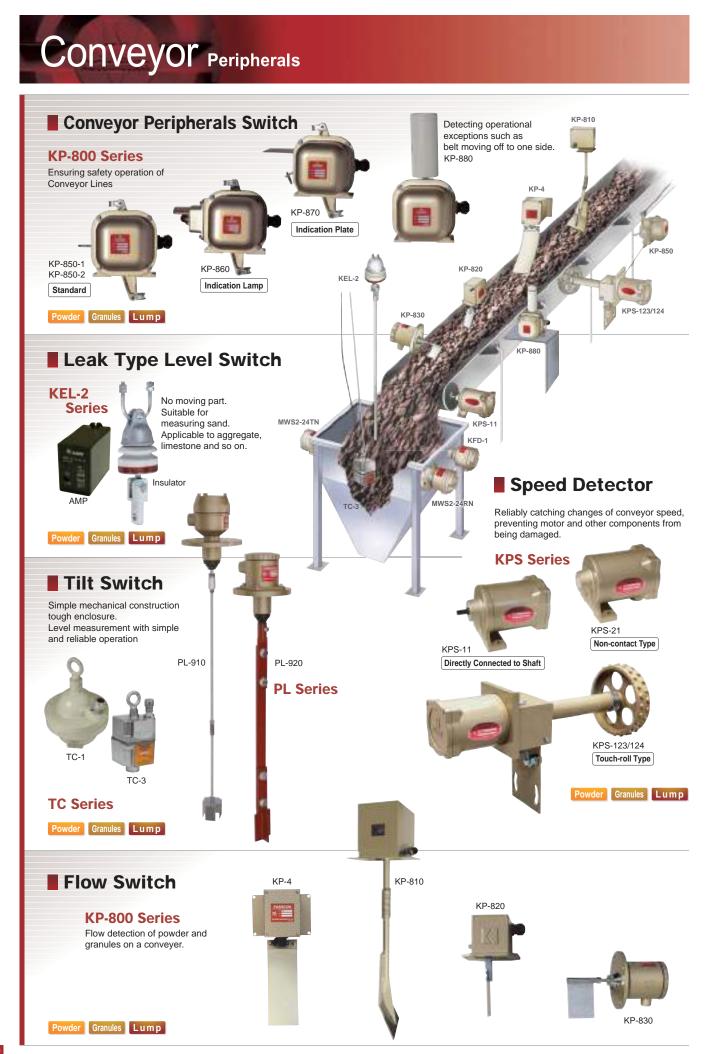
Capacitance Type Level Indicator

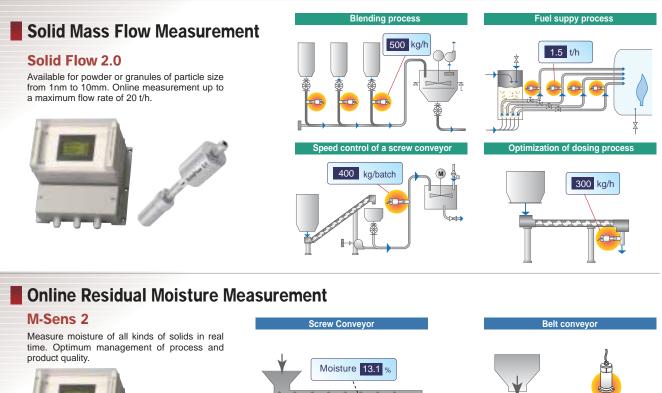
No moving part. It can be applied to any processes. Best selling line in continuous measurement

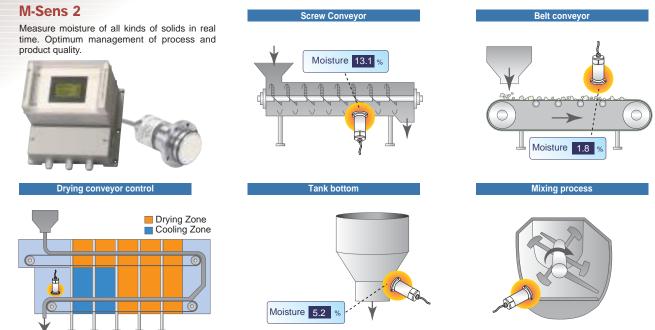
Vertical Float Type Level Indicator FLC-d **KF-100 Series** Ex explosion proof on technical It is not at all affected by standard (IEC resistration) environmental conditions such as material changes, A lot kinds of material variation enables gas and so on. Pioneer various liquids measurement in hazardous area. KF-13□ of Liquid Level Indicator made of PVC Intrinsic safety Exia ICT5 INSIDE CIRCUIT POWER I OUT-ÎĻ tt Power/Amplifier Safety barrier R/I CONVERTOR KF-10□ made of SUS Remote model R SW 40.1 11272 Amplifier MAGNET


[Explosion proof type]

Various kinds of electrode that

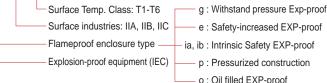

can be provided for


Liquid



Special Measurement Instrument

Special Measurement Instrument


Certified Explosion-proof Instruments: Usable Range of Explosive Gas

National Standard			ternation
d 2 G4		Ex d	IIB T4
EXP-proof construction –	 d : Withstand pressure Exp-proof e : Safety-increased EXP-proof i : Intrinsic Safety EXP-proof f : Pressurized construction 		

- o: Oil filled EXP-proof
- s: Special EXP-proof

nal Standard

4

3 · · · · · · · · · · · · · · · · · · ·
e : Safety-increased EXP-proof
- ia, ib : Intrinsic Safety EXP-proof
— p : Pressurized construction
o : Oil filled EXP-proof

Ignition Temp. of ExplosiveGas	Over 450°C	Over 300°C Below 450°C	Over 200°C Below 300°C	Over 135°C Below 200°C	Over 100°C Below 135°C	Over 80°C Below 100°C
Temperature Grade	T1	T2	Т3	Т4	Т5	Т6
Ignition Level	G1	G2	G3	G4	G5	G6

Chemical Resistance Table

			Mat	erial				Material		erial	al		
Chemicals	PVC	PA	PP	FEP	PFA	SUS	Chemicals	PVC	PA	PP	FEP	PFA	SUS
Acetone	×	×	×	Α	Α	A	Nitric acid (10%)	A	Α	A	А	Α	×
Aniline	×	В	В	Α	Α	Α	Nitric acid (50%)	В	Α	A	А	А	×
Amyl alcohol	В	В	В	Α	Α	-	Caustic silver	A	A	A	А	Α	В
Ammonia water (10%)	В	A	Α	Α	Α	Α	Sodium nitrate (10%)	Α	A	A	Α	Α	Α
Ammonia water (28%)	В	A	Α	Α	Α	A	Vegetable oil	В	Α	A	А	Α	Α
Isopropyl alcohol	В	В	В	Α	Α	Α	Sugared water	Α	Α	A	Α	Α	Α
Ethyl alcohol (50%)	В	A	В	Α	Α	A	Sugared water (alkali)	A	Α	A	А	Α	В
Ethyl alcohol (95%)	В	В	В	Α	Α	Α	Potassium hydroxide (45%)	Α	Α	A	А	А	В
Ethyl glycol	В	Α	Α	A	Α	В	Potassium hydroxide (5%)	Α	Α	A	А	Α	В
Zinc chloride	A	Α	Α	Α	Α	×	Sodium hydroxide (1%)	Α	Α	A	А	А	В
Aluminum chloride	A	А	Α	Α	Α	×	Sodium hydroxide (10%)	Α	Α	A	А	Α	В
Ammonium chloride	Α	Α	Α	Α	Α	-	Sodium hydroxide (50%)	Α	В	В	А	Α	В
Kalium chloride	Α	Α	Α	Α	Α	×	Stearic acid	A	В	В	А	Α	Α
Calcium chloride	A	Α	Α	Α	Α	В	Oil	В	×	×	А	А	Α
Ferric chloride	A	Α	Α	Α	Α	×	Ammonium carbonate	A	Α	A	А	Α	Α
Magnesium chloride	A	A	Α	Α	Α	В	Sodium carbonate	-	Α	A	А	Α	Α
Methylene chloride	×	×	×	Α	Α	В	Kerosene	A	×	×	А	Α	Α
Hydrochloric acid (10%)	A	Α	Α	Α	Α	×	Toluene	×	×	×	А	Α	Α
Hydrochloric acid (35%)	A	A	Α	Α	Α	×	Lactic acid	A	A	A	А	Α	Α
Perchloric acid	В	В	В	Α	Α	×	Picric acid	В	В	В	Α	Α	×
Hydrogen peroxide (10%)	A	A	Α	Α	Α	В	Phenol (50%)	-	A	A	А	Α	Α
Hydrogen peroxide (3%)	A	A	Α	Α	Α	Α	n-butyl alcohol	A	A	A	А	Α	-
Potassium permagnate	Α	A	Α	Α	Α	В	Hydrofluoric acid (10%)	Α	A	A	А	А	×
Formic acid	Α	А	Α	Α	Α	×	Hydrofluoric acid (50%)	Α	Α	A	А	Α	×
Xylene	×	×	×	Α	Α	A	Benzene	×	×	×	А	А	Α
Citric acid	A	A	Α	Α	Α	Α	Boric acid	A	A	A	Α	Α	Α
Cresol	Α	×	×	A	Α	A	Formaldehyde (gas)	В	Α	A	А	Α	В
Chromic acid (10%)	В	В	В	Α	Α	×	Methyl alcohol	В	A	A	Α	Α	A
Chromic acid (50%)		×	×	Α	Α	×	Methyl ethyl ketone	×	×	×	А	Α	A
Chloroform	×	×	×	Α	Α	Α	Sulfuric acid (10%)	A	A	A	Α	Α	×
Acetic acid (50%)	A	A	Α	Α	Α	A	Sulfuric acid (50%)	В	A	A	А	Α	×
Acetic acid (80%)	A	В	В	Α	Α	×	Sulfuric acid (98%)	В	Α	A	А	Α	×
Acetic ether	×	×	×	Α	Α	В	Ammonium sulfate	Α	Α	A	А	Α	В
Sodium hypochlorite	A	В	В	Α	Α	Α	Phosphoric acid (10%)	Α	Α	A	А	Α	В
Carbon tetrachloride	×	×	×	Α	А	В	Phosphoric acid (50-80%)	В	А	A	А	Α	В
Dimethylformamode	×	Α	Α	Α	Α	Α	Ammonium phosphate	Α	А	A	А	А	В
Oxalic acid	Α	А	Α	Α	Α	×	Sodium phosphate	Α	Α	A	А	Α	-

A = Good B = dependent on conditions x = Unusable

Characteristic Table of Fluorocarbon Resin

Abbreviation	PTFE (4F)	FEP (6F)	PFA	PVDF (2F)
Name	Polytetra Fluoro Etylene	Perfluoroethylene⊷ Propylene Copolymer	Tetrafluoroethylene- Perfluoroalkoxy Vinyl Ether Copolymer	Polyvinylidene Fluoride
Continuous Temp. Limit (°C)	260	200	260	150
Pull Strength (Mpa)	13.7 – 34.3	16.6 – 21.6	27.5 - 29.4	24.5 - 50.0
Affected by weak acid	No	No	No	No
Affected by strong acid	No	No	No	Corroded by fuming sulfuric acid
Affected by weak alkali	No	No	No	No
Affected by strong alkali	No	No	No	No
Affected by organic solvent	No	No	No	Almost resistant
Affected by direct sunlight	No	No	No	No
Application-Features	Anti-corrosion materials for che adhesive applications, non-grea insulation of jet aircrafts.		Machinery parts requiring anti-corrosion, intensity and transparency.	Anti-corrosion and electric insulating materials requiring flammability
Models applied	Insulator for Capacitance model Insulator for Dust Monitor	•Teflon-tube for Capacitance model (Standard: Max 120°C)	•Teflon-tube for Capacitance model (Special : Max 150°C) •Wire-tube for Capacitance model	Transmitting device for Ultrasonic Transmitter

*The above characteristic table shows the features of fluorocarbon resin alone. When it is incorporated into a product, its heat resistant temperature and strength may be varied so that the performance level. may be maintained

Table of Recommended Sensitivity and Specific Indcutive Capacity for Capacitance Type Level Switch

	Name of Object	SIC	S
	Acrylic Rubber	4	1
A	Acetate	3.2~7.0	1
A	Acetic acid	6.1~6.7	1
	Acetic anhydride	22	2
A	Acetum,	38	2
A	Acrylic Resin	2.7~4.5	1
A	Alcohol	16~31	2
A	Aluminum fluoride	2.2	1
A	Amber	2.8~2.9	1
L A	Aminoalkyl Resin	3.9~4.2	1
ŀ	Ammonia	15~25	2
A	Amyl ether	3.1	1
A	Aniline	6.9	1
A	Arboreous cotton	1.3~1.4	1
ŀ	Asbestos	3.0~3.6	1
A	Asbestos	3.0~3.5	1
l A	Asphalt	2.5~3.2	1
E	Bakelite	3.5~4.5	1
E	Balm grounds	3.1	1
E	Barley bran	1.8	1
E	Barley flour	3.0~4.0	1
E	Barley grain	3.0~4.0	1
E	Barley hull	1.5	1
E	Beeswax	2.5~2.9	1
E	Benzene	2.3	1
E	Benzine	2.3	1
E	Benzyl alcohol	13	2
	Bone dust	5.0~6.0	1
	Borosilicic acid glass	4.5~6.2	1
	Bran	1.4~2.0	1
	Butanol	16~17	2
	Butyl alcohol	11	2
	Butyl chloride	7.4	1
	Butylaldehyde	13	2
	Butylnitryl	20	2
	Calcite	8.3	1
	Calcium	3	1
(Calcium Carbonate	2.0~3.5	1
	Calcium hydroxide	2.0~3.5	1
	Calcium oxide	12	2
	Calcium phosphate	1.6~1.9	1
	Calcium sulfate	2.5~6.0	1
	Carbon bisulfide	2.6	1
	Carbon dioxide	1.6	1
	Casein resin	6.0~7.0	1
	Casting sand	3.4~3.5	1
	Cellophane	3.2~6.4	1
	Cellulose	3.2~7.5	1
	Cellulose acetate	3.2~7.0	1
	Cement powder	5.0~10	1
	Ceramic	4.0~7.0	1
	Cereal	3.0~8.0	1
	Charcoal	1.2~1.8	1
	СНСНЗ	1.2 1.0	2
	Chloride of lime	1.8~2.0	1
	Chlorobenzene	5.5~6.3	1
	Chloroform	4.8	1
	Chlorotoluene	4.0~4.5	1
	Chocolate	3.0~4.0	1
<u> </u>	Chrome	12	2
	Chromite	4.0~4.2	1
		1.8~2.8	1
	Clay Coal		1
		4	
	Cocoa grounds	2.5~3.5	1
	Coffee grounds	2.4~2.6	1
	Compound	3.6	1
	Copper oxide	18	2
I (Corn Corn husk	5.0~10 2.3~2.6	1

	Name of Object	810	•
	Name of Object Cotton-seed oil	SIC	S
	Cotton-seed oil	3.1 9.0~11	1 2
	Crude oil	2.48	1
	Crystal	3.5~4.7	1
	Curry powder	2.6	1
	Cyclohexane	19	2
D	Decanol	8.1	1
	DEP dimethy	4.5~5.6	1
	Diallyl phthalein resin	3.3~6.0	1
	Diamond	2.2	1
	Dichloroethylene	4.6	1
	Diesel oil	1.8	1
	Diethyl ether	4.3	1
	Dolomite	8	1
E	Epoxy resin	2.5~6.0	1
	Ethanol	24	2
	Ethyl acetate	6.0~6.4	1
	Ethyl ether	3.9~4.3	1
	Ethyl iodide Ethyl toluene	7.8	1
	Ethylene dichloride	2.2	2
	Ethylene glycol	37	2
	Ethylene iodide	3.4	1
	Ethylene oxide	4.0~5.0	1
	Ethylene resin	2.2~2.3	1
	Ethylene terafluoride	1.9~2.0	1
F	Feeding stuff	38	2
	Feldspar porcelain	5.0~7.0	1
	Ferric oxide	14	2
	Ferromanganese	5.0~5.2	1
	Fiber	2.5~7.5	1
	Flour	2.5~3.0	1
	Fluid margarine	2.8~3.2	1
	Fluorine rubber	6.8~8.0	1
	Fluorite	6.8	1
	Fly ash	1.5~1.7	1
	Formaline Formamido	23	2
	Formic acid	109 58	2
	Freon	2.2	1
G	Gasoline	2.0~2.2	1
	Glass	3.7	1
	Glass (granulated	6.0~7.0	1
	Glass-silicon board	3.5~4.2	1
	Glycerin	47~68	2
	Glycol	35~40	2
	Granulated gelatine	2.6~2.7	1
	Granulated sugar	1.5~2.2	1
	Graphite	12~15	2
	Gravel	5.4~5.6	1
	Grout	3.0~5.0	1
	Gum	2.7~2.9	1
н	Heavy oil	3	1
	Helium	1.1	1
	Heptanal	13	2
	Heptane	1.9~2.0	1
	Hexane	5.8~6.3	1
	Hexanol	13	2
	Hydrochloric acid 100% Hydrofluoric acid	4.0-12	1 2
	Ink	<u>11~17</u> 2.5	1
	lodine	2.5	2
	Isobutyl alcohol	18~40	2
	Isobutyl amine	4.5	1
	Ivory	6.9	1
к	Kerosene	1.8	1
L	Lactonitrile	38	2
	Lead carbonate	18	2
	Lead glass	7.0~10	1

SIC - Specific Inductive Capacity S - Sensitivity *Please be advised that recommended SENSITIVITY depends on the conditions of the object to be measured, environments/temperature, and the shape of the electrode or its mounted conditions.

Table of Recommended Sensitivity and Specific Indcutive Capacity for Capacitance Type Level Switch

	Name of Object	SIC	S
	Lead nitrate	38	2
	Linoleic acid	2.6~2.7	1
	Lumber, dried	2.0~6.0	1
	Lumber, wet	11~30	2
Л	Magnesium oxide	9.6	1
	Magnesium sulfate	8.2	1
	Manganese dioxide	5.0~5.2	1
	Marble	3.5~9.3	1
	Melamine resin	4.7~11	1
	Menthol	3.9	1
	Metane Methacrylic resin	1.7	1
	Methanol	33	2
	Methyl aniline	5.9	1
	Methyl ether	5	1
	Methyl iodide	7	1
	Methyl nitrate	24	2
	Methylamine	9.4	1
	Mica	5.0~9.0	1
	Mica	2.6~3.2	1
	Micanite	1.8~2.6	1
	Mineral oil	2.0~2.5	1
	Molasses	50~80	2
	Morpholine	7.3	1
	Na2CO3	8.7	1
	Naphthalene	2.5	1
	Natural rubber	2.7~4.0	1
	Neoprene	6.0~9.0	1
	Nitrobenzene	36	2
	Nitrocellulose	6.2~7.5	1
	Nylon Oil	4.0~5.0	1
	Paint or the like	2.0~2.2 5.0~8.0	1
	Palmitic acid	70	2
	Paper	2.0~2.5	1
	Paraffin	1.6~1.9	1
	Paraffin	2.4~6.5	1
	Paste	1.7~1.8	1
	Pentanol	14	2
	Pentanone	15	2
	Petrolatum	2.2~2.9	1
	Phenol	9.8	1
	Phosphor	4	1
	Phthalic acid	5.0~6.3	1
	Picoline	9.8	1
	Pine oil	2.5~2.6	1
	Pine resin	1.5~1.8	1
	Piperidine Plywood	5.8	1
	Plywood Poly-ether chloride	2.0~2.6	1
	Polyacetal	2.9	1
	Polyamide	2.5~2.6	1
	Polybutylene	2.2~2.3	1
	Polycarbonate	2.9~3.0	1
	Polyester resin	2.8~8.1	1
	Polyethylene	2.2~2.4	1
	Polyethylene, pellet	1.5	1
	Polypropylene	1.5~1.8	1
	Polystyrol	2.0~2.6	1
	Polyvinyl acetate resin	2.7~6.1	1
	Polyvinyl alcohol	1.9~2.0	1
	Polyvinylidene chloride	4.5~6.0	1
	Polyvinylidene fluoride	8.4	1
	Powdered coal	2.0~4.0	1
	Propane	1.6	1
	Propionaldehyde	19	2
	Propyl alcohol Propyl butyrate	32 4.3	2
			1

	Name of Object	SIC	S
٥	Quartz sand	2.5~3.5	1
R	Resin	1.8~2.6	1
	Rice	3.0~8.0	1
	Rice flour	3.5~3.7	1
	Ricinus	4.4~4.8	1
	Rosin	2.6~3.5	1
2	Rubber	2.1~2.7	1
S	Salt	5.9	1
	Sand	3.0~5.0	1
	Seasoned lumber	2.0~6.0	1
	Sesame	1.8~2.0	1
	Silicon dioxide	4.5	1
	Silicone	2.1~2.4	1
	Silicone resin Silk	3.5~5.0	1
		1.3~2.0	1
	Sinter Soda ash	12	2
		2.7	1
	Soda-lime glass Sodium carbonate	5.5~8.5	1
	Sodium carbonate	2.7	1
	· · · · · · · · · · · · · · · · · · ·	7.6	1
	Sodium nitrate	5.2	1
	Soluble quartz	3.5~4.5	1
	Soy bean	1.8~2.0	1
	Soy bean waste	2.7~2.8	1
	Styrene	2.3~3.4	1
	Styrol resin	2.1~2.8	1
	Sugar	3	1
	Sulfur	3.6~4.4	1
Т	Tar	2.0~3.0	1
	Teflon	2	1
	Tetrachloroethylene	2.3	1
	Tetrafluoroethylene	2.1	1
	Thinner	3.7	1
	Thiokol	7.5	1
	Tobacco	1.5~1.8	1
	Toluene	2.0~2.4	1
	Transformer oil	2.2~2.4	1
	Trichloroethylene	3.4	1
	Trichlorotoluene	6.9	1
	Trifluoroacetic acid	40	2
	Trinitriles	19	2
U	Urea	5.0~8.0	1
	Urea resin	3.4	1
	Urethane	6.5~7.1	1
	Urethane (hardener)	6.3	1
	Urethane rubber	6.7~7.5	1
V	Vanadium sulfide	3.1	1
	Vinyl alcohol	1.8~2.0	1
-	Vinyl alcohol resin	2.6~3.5	1
	Vinyl chloride powder	1.4	1
	Vinyl chloride resin	2.8~6.4	1
N	Water	80	2
-	Water-soluble chemicals	50~80	2
	Wheat	3.0~5.0	1
	White mica	4.5~9.6	1
×	Xylene	2.2~2.6	1
Z	Zinc oxide	1.7~2.5	1
-			
1			

- •Swing Type Level Switch Acoustic Level Switch •Capacitance Type Level Switch •Capacitive Proximity Sensor •Capacitance Type Level Indicator •Diaphragm Type Level Switch
- •Flow Switch
- •Conductance Type Level Switch •Float Switch
- •Float Type Level Indicator
- •RADAR Type Level Indicator

Agent

- On-line Sensors for Accurate Liquid Analysis
- Ultrasonic Flow meter

All-round Manufacturer of Level Controllers for Powder, Granules and Liquid

KANSAI Automation Co., Ltd.

Headquarters: TEL. 81-6-6312-2071 FAX. 81-6-6314-0848 URL http://www.kansai-automation.co.jp e-mail: infoe@kansai-automation.co.jp

Headquarters: 2-14, Togano-cho, Kita-ku, Osaka530-0056, Japan Tokyo Branch: 1-29-6, Hamamatsu-cho, Minato-ku. Tokyo105-0013, Japan Tel 81-3-5777-6931 Fax 81-3-5777-6933 Nagoya Office: 3-10-17, Uchiyama, Chigusa-ku, Nagoya464-0075, Japan Tel 81-52-741-2432 Fax 81-52-741-1588 Kyushu Office: 1-1-21, Komemachi, Kokura Kita-ku, Kitakyushu802-0001, Japan Tel 81-93-511-4741 Fax 81-93-511-4580

Tel 81-6-6312-2071 Fax 81-6-6314-0848

CIENCE GAT SCIGATE AUTOMATION (S) PTE LTD
 No 1 Bukit Batok Street 22 #01-01 Singapore 659592

 Toi: (65) 6651 0488

 Email: sales@scigate.com.sg

 Web: https://scigate.com.sg
 - Friday 8:30AM - 6:15PM

*Please be sure to read USER'S GUIDE, Installation & Operation Instructions when using the instrument. *The specifications herein may be subject to change without advance notice.