Academic institutes, universities
|
A particular interest of Micro-Epsilon is the promotion of research in academic institutes and universities. High precision measuring devices are required for research in these institutions; new techniques for sensors or new measuring principles often also emerge in this context. New possible applications often emerge from interesting projects.
|
Experimental tests on a drop impact tester
In the automotive industry manufacturers go to great lengths to improve the passive safety of all vehicles in a collision. The so-called crash absorbers join the fenders with the longitudinal bearers and taken overall they can absorb energy through fixed bumpers and plastic deformation. In addition, attempts are made to reduce the vehicle weight through new designs and the use of new materials. The effect of the actual accident event can be replicated on special drop impact testers. Through the variation of the dropped weight and the height, the impact speed can reach 12.5 m/s (45 km/h). Apart from the force, the deformation is recorded during the collision with a fast triangulation sensor.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Water depth measurement on a river model
With investigations using realiztic models of flowing waters, the river bed must be sampled as accurately as possible and without physical contact. To do this, the laser-based optical displacement measurement system, optoNCDT, is used which features high accuracy with a large measuring range and is largely independent of the ground conditions. It is mounted together with the signal conditioning electronic unit on a measurement carriage movable in the X direction which is suspended from a traversing beam movable in the Y direction. The distance to the water surface is acquired simultaneously with a parallel-mounted ultrasonic displacement system.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Deformation measurement on lightweight structures
Specially designed measurement systems, which record the surface contours without reactive effects on the lightweight structures, are employed for the examination of component deformations under load. To achieve this, two laser-based optical displacement measurement systems can be mounted on a movable subframe subdivided with nineteen fixed reference points.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Measurement of the radial deviation on superconducting magnets
At the Institute for Solids and Materials Research (IWF) Dresden a motor with magnetic bearings has been developed using high temperature superconductors which can be employed for feed pumps for liquid nitrogen. The most important application of superconducting permanent magnets is the superconducting magnetic bearing. For the measurement of the radial deviation of these magnetic bearings, U1 eddy current sensors with special temperature compensation for -196 °C and 20 °C are used in the evacuated and cooled ambient.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Thickness measurement using displacement sensors

Thickness measurement using displacement sensors is a wide application area. Basically there are distinctions between non-destructive/destructive, non-contact/with contact and one-side/two-sided thickness measurement. The Micro-Epsilon measuring techniques for thickness measurement are all emission-free whereby no emissions regulations of any kind have to be complied with. Thickness measurements must be performed both with contacting as well as with non-contact sensors whereby non-contact measuring techniques show advantages as regards accuracy and measuring speed. There is also a distinction between one-sided and two-sided thickness measurement. Two-sided thickness measurements are carried out with at least one pair of sensors which are installed together on one axis. This pair of sensors measures the target synchronously. The difference between the measurement results (C-A-B) produces the thickness of the measuring object. One-sided thickness measurements must only be performed with non-contact sensors. In doing so, the target is only measured with one sensor and either only a part of the target thickness (e.g. layer thickness) or the complete measuring object thickness is measured. Thickness measurements are mainly used in process control and quality assurance, e.g. for the control of extrusion systems or 100% checking of tube diameters.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
3D profile measurement of soil samples
German automation company Visutronik GmbH from Neubrandenburg, Germany has developed a laser scanningdevice to measure surface soil samples for subsequent geometric analysis: roughness, surface type expansion (e.g. earthworm courses), etc. The core of the measuring device is the scanCONTROL 2700-100 laser scanner.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Closed-loop gap control in magnetic bearings
Sensor technology applied
|
__________________________________________________________________________________________________________ |
High precision measurement of special profile sections in the production line
In the factory research department a fully automatic system for optical geometry measurement has been developed, constructed and integrated into a production line for lift profile rail sections. The system acquires the deviation of±0.2mmfrom straightness in both axes, the length of the section and the thickness of the rail web to ± 0.02 mm in two tracks.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Eddy current sensors in tribology testers
Eddy current sensors from Micro-Epsilon are used for various measurement tasks in tribology testers of the ITR in Clausthal. They withstand the harshest ambient conditions there as they measure directly on the shaft in the tester. A tester with water lubrication and a tester which examines plain bearings for the automotive industry have already been realized. The position of the test bearing case and the relative movement between the rotor and the test bearing is detected in the tester using eddy current sensors.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Active damping of liquid-cooled centrifuges
At certain configurations of speed, filling level and design parameters, liquid-filled industrial centrifuges tend to produce unstable running characteristics which can lead to failure of the centrifuge. The instability, which arises due to interaction between the fluid and the centrifuge, cannot be rectified by passive means (dampers), so therefore the instability is corrected actively with the aid of a magnetic bearing and suitable closed-loop controllers. The deflection of the rotor, which is acquired with two eddy-current sensors orientated at 90° to one another, is used as input information for the controller.
Sensor technology applied
|
|
|
Household appliances
|
Even household appliances require the use of displacement measurement technology. In this context, sensors are frequently used for increasing the ease of use with respect to the efficiency. Displacement and temperature measurement optimizes various processes for the optimization of the efficiency of various appliances. A well-known example is the load detection of washing machines which the metering of the detergent is based on.
|
Load detection in washing machines
With modern washing machines, energy efficiency and environmental protection are becoming increasingly important. In order to achieve optimum results, the load must be measured before the washing starts. This load measurement enables an optimum and maximum load for the machine to be determined, as well as the appropriate dosage of detergent. This reduces operating costs, while also protecting the environment. A direct weight measurement using e.g. load cells is expensive. An indirect measurement of the damper displacement is much more cost effective. Micro-Epsilon offers low cost solutions for displacement measurement in high volume production, namely the magneto-inductive MDS-40-LP-F displacement sensor, which is directly integrated in the damper.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Defect recognition on worktops
Kitchen worktops are now made from a variety of materials, e.g. natural or artificial stone, solid wood and laminate (e.g. HPL). All these materials offer benefits and have special characteristics. However, a defect-free surface finish and perfect edges are critical production factors. The example above is a so-called laminate worktop with a stone decor. As the cutting edge of this top is rough and unclear, it is covered with sidebars. Foreign bodies, uneven distribution of the adhesive or unevenness when closing may produce open joints between the top material and the sidebars. The scanCONTROL 2910-25 laser profile scanner is used to inspect if any open joints are present.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Color detection of kitchen fronts
Kitchens are available in many different colors. In order to guarantee that the customer receives the desired color, the colorSENSOR OT-3-MA-30-16 inspects the color of the kitchen fronts in the painting plant.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Displacement sensor for washing machines
When the washing machine is loaded, the displacement sensor DRA measures how much the outer drum drops. It also measures the drum’s deflection during spin-drying. Due to the inductive measurement principle, the sensor provides absolute position measuring for static and dynamic processes. Operation and the washing result are optimized by the load measurement. The displacement sensor provides an output signal proportional to the weight. This permits full utilization of the drum volume and helps to determine the required amount of detergent.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Washing machine displacement
Using an inductive displacement sensor, the displacement of the suds container during filling and the spinning stage can be calculated. The correct quantity of detergent can be calculated with the data obtained in this way. The speed for the spinning process is adapted in accordance with the displacement. The sensor is integrated in a friction damper using the measurement reducing VIP principle.
Sensor technology applied
|
|
|
Glass, ceramics
|
Glass and ceramics must always be free of defects for delivery. Systems or sensors from Micro-Epsilon are therefore often used to check the quality of the end product. The thickness, surface, contour and dimensions are often important for this. As the provider of many different measuring principles, there is already an appropriate sensor or measuring system available for practically every measurement task. Consequential costs due to processing reject products are avoided by early quality control.
|
One-sided thickness measurement of container glass
In container glass production, wall thickness and roundness of the bottles are crucial quality features. This is why these parameters must be 100 % inspected. Any faulty containers are immediately rejected and returned to the glass melt. Due to high processing speeds and in order to prevent the bottles from being damaged, a fast, non-contact measurement procedure is required. The confocal chromatic confocalDT 2422 dual-channel measurement system combined with the IFS2406-10 sensor from Micro-Epsilon are ideally suited to this measurement task.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Display glass defects
A special measuring system has been developed for the quality control of display glass. The glass pane is placed on a measuring table by a robot. A measuring arm with several confocal sensors traverses the glass pane there. If any defects are found, the pane is marked as NOK and rejected. The scanCONTROL laser scanner simultaneously circumnavigates the edges and checks these for defects and dimensions. After the check has been completed successfully, the pane is lifted back into the production process and the next measurement is started.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Display glass / flat glass thickness
A special measuring system has been developed for the quality control of display glass. The glass pane is placed on a measuring table by a robot. A measuring arm with several confocal sensors traverses the glass pane there. If any defects are found, the pane is marked as NOK and rejected. The scanCONTROL laser scanner simultaneously circumnavigates the edges and checks these for defects and dimensions. After the check has been completed successfully, the pane is lifted back into the production process and the next measurement is started.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Planness measurement of display glass
Thinnest glass of outstanding flatness is required for the production of displays for telecommunications equipment. During glass production measuring and monitoring of the flatness is a decisive factor for quality inspection. The results of these measurements can be used for optimizing the pro-duction process. On a high-precision hard rock table in the measuring room samples of these thinnest glass plates are measured by laser-optical triangulation sensors with an accuracy of 5 μm.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Flat glass defects
A special measuring system has been developed for the quality control of flat glass. The glass pane is placed on a measuring table by a robot. A measuring arm with several confocal sensors traverses the glass pane there. If any defects are found, the pane is marked as NOK and rejected. The scanCONTROL laser scanner simultaneously circumnavigates the edges and checks these for defects and dimensions. After the check has been completed successfully, the pane is lifted back into the production process and the next measurement is started.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Flat glass thickness
A special measuring system has been developed for the quality control of display glass. The glass pane is placed on a measuring table by a robot. A measuring arm with several confocal sensors traverses the glass pane there. If any thickness discrepancies are found, the pane is marked as NOK and rejected. The scanCONTROL laser scanner simultaneously circumnavigates the edges and checks these for defects and dimensions. After the check has been completed successfully, the pane is lifted back into the production process and the next measurement is started.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Flat glass - temperature measurement
Temperature plays an important role in the glass industry for many manufacturing and production processes. It is a matter of obtaining precise temperature measurements of transparent (glass) and non-transparent (moulds, crown and side walls of the glass furnace) objects.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Bottle and hollow glass - temperature measurement
Special sensors which are used for permanent temperature monitoring are installed at the individual stations of the glass production line.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Film extrusion - temperature measurement
Infrared temperature sensors from Micro-Epsilon measure the film temperature before the three-roller mill. An optimal regulation of the process temperatures is made possible due to the precise temperature values which results in a constantly high product quality.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Glass machining – temperature measurement
In order to be able to bend and shape flat glass, the exact glass surface temperature must be taken into account. Special pyrometers from Micro-Epsilon have been developed for measuring in glass manufacturing.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Glass thickness
A special measuring system has been developed for the quality control of glass. The glass pane is placed on a measuring table by a robot. A measuring arm with several confocal sensors traverses the glass pane there. If any thickness discrepancies are found, the pane is marked as NOK and rejected. The scanCONTROL laser scanner simultaneously circumnavigates the edges and checks these for defects and dimensions. After the check has been completed successfully, the pane is lifted back into the production process and the next measurement is started.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Thickness measurement of glass
The specification of the thickness of glass panes is an optimization process between a required mechanical strength and efficient use of materials. In the manufacturing process the glass thickness is measured and the conformance to prescribed tolerances is monitored. The measurement is carried out with displacement sensors working on the eddy-current principle. Here, the sensor hovers over the glass surface and measures through the glass to a metal plate situated behind it. The values can be read off directly on the device; an analog output voltage facilitates further evaluation.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Glass industry / glass - temperature measurement
Temperature plays an important role in the glass industry for many manufacturing and production processes. It is a matter of obtaining precise temperature measurements of transparent (glass) and non-transparent (moulds, crown and side walls of the glass furnace) objects.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Glass drop measurement - temperature measurement
The use of non-contact temperature measurement equipment is required for measuring the glass drop temperature. Pyrometers from Micro-Epsilon are particularly suitable due to the fast operating processes.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Thickness measurement using displacement sensors

Thickness measurement using displacement sensors is a wide application area. Basically there are distinctions between non-destructive/destructive, non-contact/with contact and one-side/two-sided thickness measurement. The Micro-Epsilon measuring techniques for thickness measurement are all emission-free whereby no emissions regulations of any kind have to be complied with. Thickness measurements must be performed both with contacting as well as with non-contact sensors whereby non-contact measuring techniques show advantages as regards accuracy and measuring speed. There is also a distinction between one-sided and two-sided thickness measurement. Two-sided thickness measurements are carried out with at least one pair of sensors which are installed together on one axis. This pair of sensors measures the target synchronously. The difference between the measurement results (C-A-B) produces the thickness of the measuring object. One-sided thickness measurements must only be performed with non-contact sensors. In doing so, the target is only measured with one sensor and either only a part of the target thickness (e.g. layer thickness) or the complete measuring object thickness is measured. Thickness measurements are mainly used in process control and quality assurance, e.g. for the control of extrusion systems or 100% checking of tube diameters.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Measuring glass cups
In the production of drinking glasses, the stem and cup are connected using a gas burner. In order to enable the precise connection of the glass stem and cup, the distance between stem and cup needs to be measured. Monitoring this gap size allows for feed rate control during production. An optoCONTROL optical micrometer measures this gap.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Glass pretensioning - temperature measurement
CTlaserGLASS has been specially developed for applications in the glass processing industry, in particular for glass bending, forming and hardening processes. The non-contact thermometer ensures precise monitoring of the temperatures.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Windscreen defects
During the production of windscreens, it can happen that the correct curvature of the windscreen has not been maintained or the fissures and cracks in the surface make the windscreen unusable. A system has been developed for this purpose which inspects the windscreens completely in-line for a surface free from defects. Several confocal sensors on a measuring beam measure the distance to the surface. Using the automatic centering function of the confocal sensors, they track the curvature of the surface precisely. The high resolution makes it possible to inspect the windscreen for cracks and fissures at the same time.
|
__________________________________________________________________________________________________________ |
Windscreen thickness
Using a film between several glass panes, laminated safety glass prevents dangerous shards flying around in the case of breakage. The adhesive film is clamped during the production. In doing so, it is important that the film shows the correct thickness in order to be able to ensure the required safety. Thickness can be measured on one side using the optoNCDT2401 confocal system. The light from the sensor penetrates the glass and displays the thickness of the film in the pane.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Windscreen profile
Flat glass for demanding industrial tasks is subjected to 100% testing after the production. Dimensional accuracy is important for industrial glass which is used for demanding technical tasks. Examples of such types of glass would be windscreens, display glass for LCD televisions or glass for the production of photovoltaic modules. Even a small deviation from the required geometry or thickness can drastically influence the later function of the glass. The glass profile measuring system uses confocal sensors. These operate with white light and precisely measure the profile of the pane and also an inner layer. A laser scanner is also used for determining the measurement.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Windscreen gap
The final appearance of a product plays a crucial role everywhere that panes are positioned automatically. Apart from the shape, stability, color etc., the final appearance is also dependent on the position of the glass in the frame. The pane must be inserted in as centerd a position as possible. A laser scanner also detects automatically for the insertion of the glass whether the gap is the same on all sides or not. If differences occur, the pane can still be moved somewhat. The extremely difficult conditions of the different reflection factors of glass and frame (metal, wood, plastic) do not affect the quality of the measured data.
Sensor technology applied
|
|
|
Precision mechanics, optics
|
A high degree of precision is important for precision mechanics and optical components. Therefore, sensors from Micro-Epsilon are frequently used for this area. The positioning of components plays a leading role in this sector. Thereby, it is irrelevant whether the inspection is performed in-line or as a routine inspection. Different measuring principles are needed depending on the measurement object and task.
|
Display glass defects
A special measuring system has been developed for the quality control of display glass. The glass pane is placed on a measuring table by a robot. A measuring arm with several confocal sensors traverses the glass pane there. If any defects are found, the pane is marked as NOK and rejected. The scanCONTROL laser scanner simultaneously circumnavigates the edges and checks these for defects and dimensions. After the check has been completed successfully, the pane is lifted back into the production process and the next measurement is started.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Display glass / flat glass thickness
A special measuring system has been developed for the quality control of display glass. The glass pane is placed on a measuring table by a robot. A measuring arm with several confocal sensors traverses the glass pane there. If any thickness discrepancies are found, the pane is marked as NOK and rejected. The scanCONTROL laser scanner simultaneously circumnavigates the edges and checks these for defects and dimensions. After the check has been completed successfully, the pane is lifted back into the production process and the next measurement is started.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Automatic winding of glass fiber cables
An even and tight winding must be maintained for the automatic winding of glass fiber cables on drums. scanCONTROL 2800 profile scanners are used for monitoring the coiling machine. They monitor the windings on the drum and control the movement components of the machine using the results.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Measurement of contact lenses
The object must endure various tests during the search for new materials for contact lenses. In doing so, the lens is located in a small case with saline solution. The lenses are inspected in the case without contact using the optoCONTROL 2600 for dimension changes during heating and expansion of the lenses. The particular benefit is that the measurement functions through the glass case and through the salt solution.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Thickness measurement of dies
When optical data carriers are produced, the data are initially transferred to a master. Depending on the number of copies, different dies made of nickel are produced from the master by galvanization. These dies must show a thickness of 297 µm ± 3 µm for faultless production. It is checked several times during the galvanization that this dimension is complied with. The company ISEDD GmbH from Bielefeld has developed a measuring device for this which enables fast and accurate inspections of the dies. Capacitive sensors from Micro-Epsilon are used for the thickness measurement.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Layer thickness measurement (non contacting)
Layer thickness measurement belongs to the group of one-sided, non-contact thickness measurement. Basically, only the layer thickness of electrical insulators can be measured for opaque objects. An eddy current sensor penetrates the insulating layer without damage and measures the distance to a layer underneath it. At the same time, a second sensor, a laser triangulator measures the insulating layer. The layer thickness is obtained by offsetting both signals. This method of measuring with two sensors using different principles is called the dual sensor technique by Micro-Epsilon. A second possibility is the layer thickness measurement of transparent materials using confocal measurement technology. The emitted white light penetrates the measuring object and provides a peak in the signal graph at every material transition. For example, the film thickness between two glass panes can be easily measured in this way.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Displacement sensor for nanopositioning tasks
Very small displacements, both static and dynamic, are normally generated by piezo actuators. High precision displacement sensors ensure that these displacements are measured to the required nanometre and sub-nanometre accuracies. Resolution and repeatability of up to 0.04nm are possible. Non-contact, capacitive displacement sensors from Micro-Epsilon provide this sub-nanometre precision. The capaNCDT series combines high precision and the required stability.
Sensor technology applied
|
|
|
Energy technology, power stations
|
Energy technology is currently a more and more important topic. The use of modern sensors makes constant new developments in this field possible. Sensors from Micro-Epsilon are used both during the development of new systems as well as for the process monitoring in power stations.
|
Thickness measurement of battery separators
In the production of battery separators the in-line monitoring of the profile thickness is an important measurement task within the framework of quality assurance. A measurement system with high spatial resolution and a high sampling rate is needed for the determination of the profile structure. This task represents one of the classical fields of application for the laser-based triangulation sensor in the Series ILD 2000. The battery separator is manufactured in an extrusion process. For the thickness measurement the optical sensors are mounted on a welded C-frame. This traverses on air bearings without making physical contact on a hard rock base. In this way the vibration of the top belt is minimized and a precise measurement facilitated.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Biogas plant filling quantity
The filling quantity in the fermenter of a biogas plant can be determined using the expansion of the gas tank. This is important in order to assure a constant gas flow to the combustion engine. Draw-wire sensors which are clamped above the film are used for this. The sensor itself is located in the generator building. If the film rises, a displacement change of the sensor is registered.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
ROV (Remotely Operated Vehicle) for pipeline inspection
To meet safety regulations, the inspection of the internal parts of pipelines is mandatory, as any defects can lead to cracks, which could result in complete pipe failure or, in the worst case, in personal injury. The critical factor is the weld seam. DEKRA developed a fully automatic vehicle that solves this task by using a combination of visual inspection and geometrical measurements performed by a scanCONTROL laser scanner from Micro-Epsilon.
|
__________________________________________________________________________________________________________ |
Thickness measurement using displacement sensors

Thickness measurement using displacement sensors is a wide application area. Basically there are distinctions between non-destructive/destructive, non-contact/with contact and one-side/two-sided thickness measurement. The Micro-Epsilon measuring techniques for thickness measurement are all emission-free whereby no emissions regulations of any kind have to be complied with. Thickness measurements must be performed both with contacting as well as with non-contact sensors whereby non-contact measuring techniques show advantages as regards accuracy and measuring speed. There is also a distinction between one-sided and two-sided thickness measurement. Two-sided thickness measurements are carried out with at least one pair of sensors which are installed together on one axis. This pair of sensors measures the target synchronously. The difference between the measurement results (C-A-B) produces the thickness of the measuring object. One-sided thickness measurements must only be performed with non-contact sensors. In doing so, the target is only measured with one sensor and either only a part of the target thickness (e.g. layer thickness) or the complete measuring object thickness is measured. Thickness measurements are mainly used in process control and quality assurance, e.g. for the control of extrusion systems or 100% checking of tube diameters.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Profile measurement of compressor blades under high temperature conditions
The thermal geometric change under operating conditions needs to be measured on a new type of composite material for gas power plants.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Position measurement on X-ray machines
For highres pictures of digital X-ray machines, the camera must be exactly adjusted to the X-ray tube. For pretty flexible operation, different axes are electrically moveable. Therefore, the adjustment of the camera to the X-ray tube can be as precise as possible, the positions of the axes are measured with draw wire sensors of the series wireSENSOR. With this gang control the camera and the X-ray tube can be moved parallel.
Sensor technology applied
|
__________________________________________________________________________________________________________ |
Gap measurement in photovoltaic modules
The module is hermetically sealed using a vacuum during a new method for the production of photovoltaic modules. The correct distance between glass front and metal rear side is important for this vacuum. Therefore, the distance of the glass pane to the rear side is automatically measured from one side in the production using confocal sensors.
Sensor technology applied
|
|
|
|